
VAST: A Spatial Publish Subscribe Overlay for
Massively Multiuser Virtual Environments

Shun-Yun Hu∗†, Chuan Wu‡, Eliya Buyukkaya§, Chien-Hao Chien∗, Tzu-Hao Lin∗,
Maha Abdallah§ and Jehn-Ruey Jiang∗

∗Department of CSIE, National Central University, Taiwan, R.O.C.
†Institute of Information Science, Academia Sinica, Taiwan, R.O.C.

‡Department of Computer Science, The University of Hong Kong, Hong Kong, P.R.C.
§Laboratoire d’Informatique de Paris 6 (LIP6), Universite’ Paris 6, France

Abstract—Peer-to-peer (P2P) architectures have recently be-
come a popular design choice for building scalable networked
virtual environments (VEs). The dynamic nature of VEs with
a wide variety of characteristics, however, requires a flexible
architecture to support different application needs. In this paper
we present VAST, a generic P2P overlay that provides spatial
publish / subscribe (SPS) services with layers to support different
VE requirements. The overlay accommodates both regular and
super-peers, and evolves based on the state of the application.
VAST takes into account the physical topology (i.e., network
distance) between peers and the heterogeneity in peer resources
so that requirements of different kinds of VEs are met in
a practical, flexible, and efficient manner. Our analysis and
simulations show that the adoption of super-peers provide a
unique design space where both the required bandwidth at the
server, and the average latencies among clients, can be effectively
reduced, such that even a crowded virtual world region can be
hosted under residential ADSL environment.

I. INTRODUCTION

In recent years, massively multiuser virtual environments
(MMVEs) such as the billion-dollar massively multiplayer
online game (MMOG) industry, have demonstrated a growing
interest and need for immersive interactions within virtual
environments (VEs). A networked VE [1] allows users from
across the globe to enter a virtual world and assume virtual
representations called avatars, to interact with others for
adventures, socialization, or training. Although state-of-the-art
MMOG can host up to a million concurrent users (e.g, World of
Warcraft hosts over 1-million peak concurrent users in China
in 20081), such scalability is achieved by heavy server-side
investments — hosting many disjoint worlds using clusters of
servers, each serving a few thousands of users maximally. To
lower server costs and increase concurrent users to the range
of millions in a single virtual world, many peer-to-peer (P2P)
approaches have been proposed in recent years [2], [3], [4], [5],
[6], [7]. These designs can be mainly categorized as follows:

Overlay management The construction of a P2P overlay
that determines how nodes in a networked VE should be
connected and how messages should exchange [2], [3].

State management The maintenance and distribution of
game states (i.e., the various attributes used by game objects,
such as a player’s health points and equipments) onto many

1http://www.corp.the9.com/news/2008/news 080411.htm

peers, while handling consistency, load balancing, and fault
tolerance [4], [5], [6], [7].

Content management The utilization of client resources to
help distribute game content such as voice data [8], [9], or 3D
models and textures [10], [11], [12], to players in need.

Fundamental to all these designs is a robust and efficient
P2P overlay that must support basic primitive operations in
a VE, while considering the reality of P2P networks (e.g,
heterogenous peer resources, fluctuating network conditions,
and dynamic join and leave of peers) and specific application
requirements (e.g, latency constrains due to the interactive
nature of MMVEs). In this paper, we propose a generic over-
lay design that supports the various application requirements
and network considerations for large-scale networked virtual
environments. We first identify the basic primitive in VEs as a
spatial publish / subscribe (SPS) mechanism [13]. That is, the
ability to publish or subscribe an arbitrary convex virtual area
is a functionality generic enough to support various existing
VE designs. We then propose VAST2, a P2P overlay that is
practical, where a super-peer-based architecture is adopted;
flexible, where spatial publish / subscribe is realized through
the use of a Voronoi-based Overlay Network (VON) [3]; and
efficient, where each node constrains its use of resources, and
topology awareness, or network latency, is considered during
transmissions. The key features in our design include the
maintenance of flexible publish / subscribe (pub/sub) relations
among peers using a VON, super-peer assisted messaging, and
topology-aware super-peer selection that minimizes messaging
delays. Our analysis and simulations demonstrate VAST’s
scalability and efficiency in supporting basic VE requirements
in practical VE scenarios.

The rest of the paper is organized as follows. We first
present related work regarding P2P-based VE designs in
Section II. In Section III, we present the rationales and main
designs of VAST. Evaluations of VAST using simulations in
terms of performance, correctness, and fault-tolerance is given
in Section IV, and the paper is concluded in Section V.

2(V)ON-based (A)pplication-layer (S)PS with (T)opology-awareness

II. MOTIVATION AND RELATED WORK

A. P2P VE

The premise of P2P VEs is that even though there may be
a total of millions of concurrent users in a VE, at any given
time, a user is only interested to see or interact with a small
number of other users within an area of interest (or AOI [1],
often denoted as a visibility sphere or circle around the user).
Existing P2P VE research can be classified mainly as follows:

Overlay management refers to constructing P2P overlays
to address neighbor discovery (i.e., finding the AOI neighbors
of interest, given a position and an AOI-radius). It can be
realized by a spatial query (as done by Colyseus [5] or GP3
[14]) or by a spatial multicast (as done by Solipsis [2] or VON
[3]). However, spatial query introduces unwanted latencies,
while spatial multicast may generate message overheads, and
cannot support AOI of different interest ranges.

State management refers to the maintenance and distri-
bution of game states onto certain chosen peers. SimMud
[4] partitions the virtual world into many fixed-size regions,
each of which managed by a coordinator peer. Coordina-
tors periodically multicast updates to all region members.
HYMS [15] partitions the virtual world into multiple dynamic
cells managed by a central server. Qualified clients can then
takeover server loads and communicate in P2P fashions among
themselves. Colyseus [5] uses a randomized DHT or a range-
queriable DHT to discover objects for peers. Each object has
a primary node for its management, and any number of read-
only object replicas may exist on the other nodes, enabling
quick local access to the object. VSM [7] and VoroGame
[16] propose state management algorithms by partitioning the
world with Voronoi diagrams, so dynamic load balancing can
be achieved.

Content management is another recent focus in P2P VEs,
and deals with game content (e.g, 3D models and textures)
that is becoming too large and dynamic. Recent works (e.g,
FLoD [10], LODDT [11], and HyperVerse [12]) propose to
use P2P networks to offload the content delivery from server
to clients. The basic idea is that as VE users often have
overlapped visibility, the content required for rendering can
be obtained from not just the server, but nearby peers as well.
Current proposals consist of a discovery stage and an exchange
stage, where each peer first finds which objects are needed and
which peers are available, before performing state and content
exchange with the discovered peers.

B. VE Scalability

VE systems can be seen as state machines where various
game states are updated via application-specific rules called
game logic [7]. User behaviors are captured as event messages,
which are sent to the manager of game states for processing.
The manager may then send update messages to notify other
users affected by the actions. For example, movement is often
the most basic event, which is sent when a user moves and
accounts for 70% of traffic in MMOGs. We refer to the user
that performs behaviors and sends out event messages as an

agent, and the game state manager as an arbitrator. In client-
server architectures (e.g, first person shooter (FPS) games [17]
or MMOGs [18]), each user client is an agent, and the server
is the arbitrator. In a fully connected P2P architecture (e.g,
real-time strategy (RTS) game), every user machine is both
an agent and also arbitrator, where all hosts process all event
messages [19]. We can thus see that this event - process -
update cycle is a common design for VEs.

The key to building scalable VEs thus is mainly a task of
dividing the processing and bandwidth workload of these cy-
cles to many separate hosts (e.g, server clusters or super-peers
in a P2P networks), while maintaining the basic consistency
and interactivity requirements [20]. It is possible as the user’s
AOI is often limited, message exchanges thus can be localized.
Typical AOI are circular in shape (as commonly used by
MMOGs), but may also be rectangular (for RTS games) or
even of arbitrary shape (as in FPS games, where visibility
extends until encountering some obstacles).

C. Spatial Publish/Subscribe (SPS)

Recently, spatial publish / subscribe (SPS) [13] has been
identified as a general mechanism to distribute state man-
agement. A SPS assumes that all message publications and
subscriptions (pub/sub) occur within a Cartesian coordinate
system. For simplicity, we will focus on a 2D coordinate
system (i.e., a plane). Each user node in a SPS may perform
one of the following basic operations: 1) point publication:
to send a message at a specific point; 2) area publication: to
send a message to an area; 3) point subscription: to receive
any messages at a point; and 4) area subscription: to receive
any messages published within an area. The basic relations
among them thus are: 1) a point publication is received by any
area subscribers covering the point; 2) an area publication is
received by any point or area subscribers whose subscriptions
fall within the publication area; 3) a point subscription receives
any messages sent by an area publication that covers the point;
and 4) an area subscription receives any messages generated
by a publication (point or area) falling within the subscription
area.

With SPS as a primitive, VE state management can be
supported with two layers of SPS, one for event and another
for updates dissemination (i.e., an event layer and an update
layer). For example, if the entire world is divided into various
regions (e.g, by grid [21], [4], hexagon, or Voronoi partitions
[7]), each handled by an arbitrator of limited responsibility.
The arbitrator can then perform an area subscription in the
event layer over its managed region. Each user then sends
any event as a point or area publication to the event layer,
which will be received by the arbitrator whose regions are
affected. After an arbitrator has processed and updated the
relevant game states, updates can be sent as point publications
on the update layer for each updated objects. Users who have
area subscriptions for their AOIs may then receive the updates
in view. Note that the subscription areas of arbitrators are
generally fixed, and publications occur at the objet locations,
while the pub/sub of the users move more dynamically.

III. VAST ARCHITECTURE

The goal of VAST is to design an generic overlay architec-
ture for a large-scale P2P VE, which supports SPS functions in
a practical, flexible, and efficient manner. By “practical”, we
aim to address various real deployment issues, including the
heterogeneity and churn of peers, the existence of NATs that
often hinder P2P deployments, and the security vulnerability
resulting from IP exposures in a P2P network. By “flexible”
we mean to support the full SPS operations. By “efficient”,
the message overhead to implement our architecture should be
small, while fast deliveries between any pairs of publishers and
subscribers should be provided by considering the underlying
network topology.

A. Basic Design

We consider a large-scale P2P VE, where avatars (i.e.,
clients) are arbitrarily distributed in the virtual world. Each
avatar may be interested to receive updates from one or
multiple arbitrary convex areas, which constitutes its area(s)
of interest (AOI). An illustration of the VE is shown in Fig. 1
(A). Each avatar in the VE represents a user of the application
in the physical world.

Peers in a P2P network can be highly heterogeneous, with
drastically different CPU capacity, bandwidth, and stability.
Practical P2P systems thus often utilize super-peers, which are
peers with higher CPU/bandwidth capacities and better stabil-
ity, to help maintain the overlays, e.g, ultrapeers in Gnutella or
super-peers in Skype. To address peer heterogeneity and utilize
fully the peer resources, we divide peers in the P2P VE into
super-peers (called relays) and regular peers (called clients),
according to their capacity, stability, and trustworthiness. In
VAST, every client in the P2P overlay is attached to a relay.
Relays are assumed to have public IP addresses and can reach
each other directly, forming a relay backbone or relay mesh.
Each client performs SPS operations, while a relay manages
overlay connectivity and message delivery with the clients’
pub/sub information, i.e., the pub/sub messages to/from a
client are forwarded by the relay it connects to via the relay
mesh. As a super-peer may also map to an avatar, it may also
contain a client component that could perform SPS operations
by attaching to itself. The P2P overlay with clients and relays
is shown in Fig. 1 (B). An illustration of the mapping between
the VE and the P2P overlay is as follows: Avatar a and b
map to client a′ and b′ in the P2P overlay, respectively; if
avatar a sends a pub message to avatar b, the message is
passed from client a′ to R1 (the relay it attaches to), then
forwarded from R1 to R2 (the relay b′ attaches to), and will
be passed on by R2 to b′, eventually reaching avatar b. Note
that the maximum number of hops is three for any client-to-
client communications, and can be two if both clients connect
to the same relay.

In addition, if several clients subscribed to the same pub
message are attached to the same relay, only one pub message
is sent from the publisher’s relay to the subscriber’s relay.
For example, in Fig. 1 (B), if all three clients attached to
relay R2 subscribe to client a′’s publication, only one copy

Fig. 1. VAST architecture.

of a′’s pub message will be forwarded via R1 to R2, who
then distributes to all three subscribing clients. This way, no
redundant messages are forwarded over the relay mesh.

In the P2P overlay, we assume that each host machine
p (client or relay) can be assigned a physical coordinate,
(xp, yp), that represents its relative location to each other on
the physical Internet. The coordinates of a host may repre-
sent its latitude and longitude, or be derived using network
positioning (e.g, GNP [22], Vivaldi [23]). We assume that
such physical coordinates are relatively stable while the cor-
responding avatar moves arbitrarily in the VE. The Euclidean
distances on this coordinate system approximate the latencies
(or network distance) among the hosts. Each client in VAST
connects to the closest available relay (in terms of network
distance). As an analogy, the P2P overlay is like a routing
layer for end-to-end messaging between two avatars, where
the super-peers are analogous to “routers”.

Compared with direct message exchanges among the clients
(without going through relays), our design is motivated by the
following considerations:

1) Heterogeneity in peer resources: Some clients are low in
CPU power and bandwidth capacity and may not publish to
many subscribers, as when the user density around an avatar
is high; on the other hand, relays may have excess resources
that should be maximally utilized to improve the quality of
experience for all users.

2) IP hiding: As each client is only aware of the IP of its
relay, which is selected from trustworthy hosts, the probability
of IP-based attacks is lowered.

3) NAT-traversal: In our relay selection, we may only select
hosts with public IPs; the difficult NAT traversal problem thus
is bypassed by using relays for deliveries.

4) Inter-ISP traffic minimization: In VAST, only one copy of
every pub message is delivered between the source relay (i.e.,
the pub client) and each destination relay, regardless of how
many sub clients exist at the destination relay. If the pub/sub
clients are located far apart physically, this effectively avoids
redundant long-range messages. In case that clients reside in
different ISPs, inter-ISP traffic will be significantly reduced.

A tracking server (called gateway) is included in the VAST
architecture for bootstrapping, similar to many practical P2P
systems such as BitTorrent, PPLive, or SopCast. VAST targets
at maximal possible distributed designs and the gateway would
only perform a minimum number of necessary tasks.

We describe below the key algorithms to implement VAST:

B. Pub/sub relationship discovery

Since each relay in VAST forwards messages for the clients
connected to itself, it needs to maintain the pub/sub relation-
ship for all the attached clients. Ideally, when a publication
request reaches the relay, the relay could simply look up a
mapping table to find and deliver message to the subscriber’s
relay. How to achieve this effectively becomes an important
design challenge. We address this issue by utilizing a Voronoi-
based Overlay Network (VON) [3] and noting that it is pos-
sible to support SPS by slightly extending VON’s functions.

A VON is a fully-distributed overlay that allows neigh-
bors to be discovered on a Voronoi-partitioned virtual space.
Each node in VON has a coordinate point and specifies
an AOI within which the node is constantly aware of all
AOI neighbors. Nodes are allowed to move continuously in
space and connect with new AOI neighbors. For simplicity,
we assume a 2D space but note that VON is generalizable
to 3D spaces. To discover new AOI neighbors, each node
organizes the coordinates of itself and its AOI neighbors in
a Voronoi diagram [24]. A Voronoi diagram partitions a space
with n nodes into n Voronoi regions such that all points
closest to a particular node are contained within the node’s
region. Certain boundary neighbors (i.e., AOI neighbors whose
Voronoi regions overlap with the AOI boundary) thus can be
identified to check if the moving node should be notified of
new neighbors outside the moving node’s current AOI.

To join a VON, a join request is forwarded from any existing
node (but often a gateway node), towards the direction of
the joining position via greedy forward (i.e., at each hop, the
message is sent to the node whose coordinate is closest to
the destination, also known as compass routing). Once the
request has reached the acceptor node whose Voronoi region
covers the joining spot, the acceptor can return a list of initial
neighbors for the joining node to contact. Additional nodes
within the joiner’s AOI are discovered via notifications from
known AOI neighbors. To maintain the overlay connectivity,
each node should be aware of its closest enclosing neighbors,
even if those neighbors are outside of its AOI (see Fig. 2 for
neighbor definitions in a VON. The star is self, the squares
are enclosing neighbors, the triangles are boundary neighbors,
and the circles are both enclosing and boundary neighbors).

We note that it is trivial to discover and maintain pub/sub
relations among nodes on a VON, by specifying the subscrip-
tion area as the AOI of a node. Subscribers can thus learn of
potential publishers by performing AOI neighbor discovery. As
such knowledge is mutual, potential publishers are also aware
of their subscribers continuously. Publications can thus be sent
directly from publishers to subscribers. Although the original
VON uses circular AOI, we note that AOI can in fact be of
arbitrary convex shapes without affecting VON’s correctness.
In VAST, we thus also consider flexible AOIs, which can either
be of arbitrary convex shape, or may constitute of multiple
disjoint areas. In the latter case, an avatar’s AOI maps to
multiple nodes in the VON, each corresponding to one interest
area for the avatar.

To add relays to the picture, we define a VON peer (or
simply a peer) as a virtual client entity stored and managed
by a relay. Relays thus act as proxies for the clients in
forming a VON composed of the clients’ corresponding VON
peers. All VON-specific functions then are performed by the
VON peers (e.g, neighbor discovery, message publications),
and actual clients only send pub/sub requests to their relays,
while receiving publications from other clients. In other words,
VAST is effectively a logical VON, where each VON node
represents a client’s interest (i.e., its subscription area), and
many VON nodes are physically run at the same relay.

Fig. 2. A Voronoi-based Overlay Network.

C. Spatial Publish Subscribe
We now describe how subscriptions and publications can

be supported on VON. To simplify our discussions, we will
describe SPS support in purely logical terms (i.e., we only
discuss the functions performed by the VON peers and not
how relays are used, as relays can be seen as a separate layer
independent of the logical layer of VON).
Subscriptions When a client subscribes, it specifies its sub-
scription in the form of an area with a reference point inside.
The reference point becomes the center position of a VON
peer managed by the client’s relay. Note that the area size is
a small value for point subscriptions. The VON peer would
then join a VON at the reference point with the subscription
area as its AOI using VON’s join procedure. After the join,
the subscription area is learnt by all other VON peers whose
Voronoi regions are covered by the subscription area. As the
knowledge on VON neighbors is mutual, this effectively helps
potential publishers to build up a subscriber list of remote
VON peers who might be interested in future publications.
Publications Whenever a publication occurs, the publication
request is first sent from the publishing client to its relay,
and processed by the publisher’s corresponding VON peer.
The VON peer looks up its subscriber list and determines if
any subscribers should receive the message. The publication
is then sent directly to those subscribing VON peers (via
their associated relays physically). If no subscribers are found,
then the publication has no effect. If a publication area spans
more than one Voronoi regions, it can be forwarded to each
VON peer whose Voronoi regions are partially covered by the
publication, and the above process is repeated at each affected
VON peer. To avoid redundant forwarding, a mechanism such
as VoroCast [25] can be utilized.

D. Relay Selection and Load Balancing

When a new client joins the VAST network, it first contacts
a gateway and attempts to locate its physical coordinate via
some existing network position algorithms (e.g. Vivaldi). For
example, the gateway could send back to the client a few
initial relays with which the client can measure latencies and
calculate its own physical coordinate. The client then asks
some existing host in the relay mesh (e.g., the gateway) to
help forward its physical coordinate to the relay closest to it.
The closest relay would then send back the joining client an
initial list of its known relay neighbors. The client then could
contact each relay and connects to the closest, available one.
To prevent overload, each relay would set a peer limit as to the
maximum number of clients it can accept. Clients refused by a
relay to join may contact the next available relay until it finds
one to join. After correct joining, the client may performs SPS
operations using the methods described previously.

New relays in VAST are dynamically selected and added
into the relay mesh, to balance the load on the existing relays
and to bound the message passing delay between pub/sub
clients. There are two possible types of load for a given relay:
1) the maintenance of subscriptions and subscription matching;
and 2) the communication traffic to deliver messages to
and from clients. Note that these two loads are somewhat
independent (e.g, if subscription interests do not change, then
the load would mainly be on communication).

Each existing relay in the relay mesh measures its own
load overtime, which can consist of both CPU usage and
bandwidth consumption. When the load on the relay becomes
excessive, the relay will select a list of “migration candidate
clients” from all the clients connected to itself, and recommend
their migration to other relays. The migration candidate clients
can be selected using different rules, e.g., those with the
largest distances to the relay, or the maximum numbers of
messages delivered via the relay. The relay suggests to each
migration candidate client another existing relay with the next
closet network distance to the client and a light load, where
the distance is computed using coordinates of the client and
loading information of other relays. The migration candidate
client will then signal the recommended relay for a migration.
The relay contacted will evaluate whether to accept a migration
or not, based on its current load and the distance between itself
and the candidate client.

For those migration candidate clients whose migration re-
quests are not accepted, they will be reported by the current
relay to the gateway server. Each migration candidate client
reported is associated with a weight of migration, which
reflects the necessity level of its migration. This weight can be
determined by several factors, such as the load on its current
relay and the distance of the client to the relay.

The gateway server keeps a list of migration candidate
clients reported from different relays and groups them ac-
cording to their physical coordinates. The gateway server
also maintains a dynamic pool of candidate relays, which
are selected from all hosts in the overlay. The selection

of candidate relays should typically be implemented as a
continuous process: A host is treated as a client when it
first joins, its quality with respect to bandwidth/computational
capacity, stability and trustworthiness will be evaluated in an
ongoing fashion, and it can be promoted to a candidate relay
if it is found to satisfy the selection criteria. Detailed selection
criteria are application-dependent, and are thus out of our
current scope.

When a migration group in a physical region has become
significant enough (with respect to client numbers and mi-
gration weights), the server will select one new relay for
the migration candidate clients in the group from its pool of
candidate relays. Let C denote the set of candidate relays and
P be the set of migration candidate clients in the group. Let
R be the set of all existing relays. A new relay is selected
from the candidate pool C as the best one, via which the
average messaging delay from a client in P to any relay in R
is minimum.

Let d(a, b) represent the Euclidean network distance be-
tween host a and b, computed using the physical coordinated
of a and b. The new relay v is selected by solving the following
optimization problem:

min
v∈C

∑
p∈P d(v, p)
|P|

+
∑

r∈R d(v, r)
|R|+ 1

(1)

Here, |P| and |R| denote the number of clients/relays in P
and R, respectively. The first operand in Eqn. 1 represents the
average network distance between a client and the candidate
new relay; the second denotes the average network distance
between the relay and all the relays (including itself). The
objective function represents the average network distance
from a pub client to any destination relay via the new relay,
which approximates the message passing latency from the
client to any destination relay. When the best relay is found,
the new relay would join the existing relay mesh and accept
the migrated clients.

E. Fault Tolerance
Handling of the failure of a relay is closely related to the

procedures for load balancing and new relay selection. If a
relay fails due to the departure of the corresponding avatar, the
clients originally connected to the relay will need to contact
the remaining relays it knows. If the connection request from
such a client is not accepted by the contacted relays, the client
will be included in the migration candidate list at the tracking
server with the most significant migration weights. New relays
will be selected to serve such clients by the server.

Relays are stateful (e.g, they retain pub/sub relations), so it
is important that proper mechanisms exist to restore their states
in case of failures. Currently, when clients are disconnected
from VAST due to a failed relay and re-connects back to
an existing relay. They would re-perform subscriptions at the
new relay, effectively building up the new pub/sub relations
at the new relay and its associated neighbors. However, such
procedure may take some time and would show as application
pauses to the clients during the re-join.

Fig. 3. Physical coordinates obtained from Vivaldi [23]

IV. EVALUATION

The evaluation of VAST involves answering certain ques-
tions related to VAST’s design goals. The main questions
we would like to answer are: 1) How practical is VAST if
deployed in a real world situation? 2) How does the size of
relays affect the overall performance and correctness of VAST?
3) How does topology-awareness affect the general perfor-
mance? and 4) How tolerant is VAST under the dynamics of
P2P networks? Specifically, how well can VAST sustain node
departure or massive failures?

We use simulations for our evaluation as it can be done
within a more controlled environment. We choose to simulate
a Second Life region, with a dimension of 256 x 256 meters,
and maximum concurrent users of about 100 [26]. The AOI
radius of a Second Life avatar is about 64 meters.

For the latencies between the nodes, we would like to use a
full pair-wise latency dataset from the real world, and found a
set of 90 nodes from PlanetLab’s all-pair ping3. We do not set
any bandwidth limitation on the nodes, so that full bandwidth
requirement can be measured and observed with our scenarios.

As we are mainly interested in VAST’s steady state behav-
ior, we allow the full 90 nodes to join the system first, before
allowing them to move with a given behavior pattern. Each
node performs point publications of its current positions 10
times a second, and uses its AOI as the subscription area, to
discover other nodes and receive their position updates. The
subscription area also continuously moves with the node. We
test both random waypoint and cluster movement, where the
cluster size is set to 6 (i.e., 15 nodes per cluster on average),
and each node generally moves within its own cluster, with
only a small probability to move towards other clusters. The
movement speed is set to 5 meters per time-step, where
each time-step is 100 ms (i.e., 50 meters / second), this is
a rather high speed given the AOI-radius of the avatar (i.e.,
2.5 seconds to cross a full AOI), as we would like to see how
VAST performs under what might be currently considered as
a crowded virtual world region.

We adjust relay size from 1 to 90 to simulate both a classical
client-server (i.e., 1 relay) and fully distributed P2P (i.e., 90

3http://pdos.csail.mit.edu/s̃trib/pl app/2003-02/2003-02-13/. Note that as it
becomes more difficult to obtain full pair-wise ping as more nodes are in the
system, we found that smaller total node size would give us more complete
pair-wise ping.

relays) and any in-between range. Relays are chosen as hosts
whose latencies are generally shorter from other host (i.e., their
physical coordinates are closer to the center of the Vivaldi
coordinate system, see Fig. 3). Each simulation is run for
1000 time-steps (i.e., roughly 100 seconds). One important
parameter related to performance is the number of maximum
clients at each relay. For this, we designate it as a little over
the average number of clients each relay should accept if
clients are uniformly assigned to relays. Specifically, the value
is peerlimit = (totalnodes − relaysize)/relaysize + 2.
In practice, the limit should be determined dynamically and
individually according to the loading of the relay. Finally, each
node is allowed to maintain the information of 10 closest
relays, so that clients can find other relays to connect in case
of relay failure.

To evaluate the effect of topology-awareness, we use two
methods for a new node’s join. Topology-aware join allows
each node to join the system with its physical coordinate, as
determined by the Vivaldi algorithm. Topology-unaware join
lets each node uses its initial coordinate in the virtual world as
its physical coordinate. This has the effect of clustering nodes
that are close in the virtual world to connect to the same relay,
at least initially.

Below we discuss the simulation results according to
VAST’s performance, correctness, effect of movement models,
and fault-tolerance. For brevity, we will use peer to refer to
VON peers in our discussions below. As cluster movement
is more realistic in virtual worlds, the discussions on perfor-
mance and correctness are shown with cluster movement.

A. Performance

The first question we would like to answer is: how well
can a P2P approach such as VAST distribute the server’s load,
and what would be the additional load at each relays? We
find that given the movement patterns and user density in our
scenario, an ordinary client roughly has 0.5 KB/s of upload
and between 15 KB/s (for cluster movement) to 20 KB/s (for
random movement) of download. Upload is fairly constant for
clients as they only send periodic movement publications to
their relays. The difference in client download reflects the
different average AOI under the specific movement model,
where it is about 15 neighbors under cluster movement (i.e., 90
nodes / 6 clusters = 15 neighbors / cluster), and 20 neighbors
under random way-point.

Fig. 4(a) shows the upload bandwidth for both the gateway
and the relays under topology-aware and topology-unaware
join mechanisms. We focus on upload as it is often the
main bottleneck for both clients and servers. We can see that
gateway upload is about 1.3 MB/s under a single relay (i.e.,
client-server, or C/S-like), and gradually decreases to only
about 40 KB / sec in 90 relays (or, pure P2P). We also
note that gateway’s upload increases first to 1.8 MB/s and
1.5 MB/s when the number of relays increases to 2 and 4,
before falling down to 1.3 MB/s again at 6 relays, and further
down to 500 KB/s at 25 relays. This shows that initially, due
to the increased inter-relay communications, bandwidth usage

(a) bandwidth usage (b) peer size per relay (c) transmission latency

Fig. 4. Performance Evaluation of VAST (cluster movement)

(a) discovery consistency (b) drift distance

Fig. 5. Correctness Evaluation of VAST (cluster movement)

may in fact increase before falling down. For relays, it begins
with the 1.1 MB/s upload for 2 relays, and gradually falls
down to as low as 35 KB/s (when the relay hosts itself as the
only peer). We also observe that, when there are more than
sufficient relays for clients to connect (e.g, after 45 relays,
more relays exist than clients), many relays thus handle its
client as the only peer. The effective relay size thus is often
much smaller than the designated relay size (e.g, for 60 relays,
only 16 relays, or roughly 15% of all nodes, contain more than
one peer). As shown in Fig. 4(b), the average hosted peers per
relay is actually much smaller than the specified relay size.
These results show that, under our scenario, a gateway server
needs over 10 Mbps of upload in a pure C/S setup, but would
require only one third as much bandwidth, when there is about
30 relays. Residential ADSL with less than 5 Mbps of upload
would suffice to host such a gateway server. For relays, when
the relay size is 1/3 of all nodes (i.e., 30 relays), the upload is
between 80 KB/s to 200 KB/s for each effective relay, which
means that a 2 Mbps upload would suffice as relays. Thus,
we can see that if 1/3 of all nodes are capable to perform
relay tasks, our scenario of 90 quickly moving users can be
supported with only a relatively light-weight server.

Another important aspect to VAST’s performance is the
latencies incurred for transmissions. Note that as we do not
consider the effect of processing, the latencies in discussion
here only refer to transmission latencies. We specifically
measure the latencies for movement updates, as these are
often the most time-critical updates for VE applications.
From Fig. 4(c), we see that under C/S the average (and the

maximum) latency is about 200ms, while the average latencies
under pure P2P is 110ms, which is roughly the average end-
to-end latency in our dataset. With the increase in relays,
the average latencies increase quickly to a high of 340ms,
before decreasing continuously. The main reason is that while
pure P2P has an average 1-hop latency, and C/S has the
average round-trip latencies. With relays, the message needs
to travel three-hops maximally before reaching a subscriber.
However, as the number of relays increases, the transmissions
will compose of a mixture between 1 to 3 hops (i.e., 1 hop
for direct transmissions between clients who are also relays;
2 hops for clients hosted on the same relay; and 3 hops for
clients communicating via 2 relays). The average latencies thus
decreases until all communications occur with 1 hop (at 90
relays). One important observation is that while the average
latencies initially increase with the usage of relays, they would
decrease to a point where it is about as good as C/S (at
roughly 50 relays), and even better. Thus, there is a sweetspot
in relay size (between 50 and 90 relays), where the system
has equal or better average latencies than C/S, and requires
much lower upload bandwidth. Another expected observation
is that a visible latency difference exists between topology-
aware and unaware joins, at roughly 20-30ms between 10
and 70 relays. Depending on the application, this may or
may not be a significant performance factor. It also means
that topology-awareness is mostly relevant when using relays
matters. When using relays is not economic (for very small
number of relays), or not practical (for large number of relays),
being topology-aware does not affect performance much.

(a) bandwidth (b) latency

Fig. 6. Effect of behavior models (random and cluster movement)

(a) failure under cluster movement (b) failure under random movement (c) time-series of 20 concurrent node failures

Fig. 7. Effect of node failures (random and cluster movement)

B. Correctness

While the basic performance of a relay-based architecture
may be more desirable than pure C/S or P2P, we need to make
sure that VAST still performs the basic publish / subscribe
correctly. Here we define discovery consistency (or consistency
for short) as the number of AOI neighbors actually seen over
the number of neighbors that should be seen (also known as
topology consistency [3] or awareness rate [27]). It is a basic
measure of how consistent is the view of each node from
the actual view of the system. Another measure we use is
drift distance [3], which measures the difference between the
observed and the actual coordinate positions. Drift distance
compliments discovery consistency in measuring correctness,
as being aware of a neighbor does not equate to knowing its
position correctly. Drift distance also increases with higher
latencies. Fig. 5(a) shows the discovery consistency between
topology aware and unaware simulations. We can see that
pure C/S or P2P achieves the best consistency, at over 99.8%.
Consistency drops as latencies increase with the introduction
of relays, but then improves back as latencies become smaller
again. Fig. 5(b) also shows the drift distance for both topology-
aware and unaware simulations, where the shape of the curves
closely resemble those of the latencies data. We can thus see
that both the discovery consistency and the drift distance are
a function of the average latency.

C. Movement Models

To verify that VAST may perform with similar charac-
teristics under different movement patterns, Fig. 6(a) shows

the bandwidth usage (both send and receive) for the relays
under both random and cluster movements. Here we see that
bandwidth usage at the relays decreases quickly as relay size
increases, but cluster movement uses a smaller amount of
bandwidth. This is likely due to the lower number of average
AOI neighbors under cluster movement (about 15) than under
random movement (about 20). However, Fig. 6(b) shows the
average latencies for both movement models, and we can
clearly see that no significant differences exist for latencies
between the models.

D. Fault-tolerance

For our final evaluation, we consider the effect of node fail-
ure on system performance. Here we perform failures between
1 to 20 randomly selected nodes of a specific type. Fig. 7(a)
shows failures under cluster movement and Fig. 7(b) shows
failures under random movement. Each simulation is run with
1000 steps, and a failure scenario of the specified number of
nodes occurs mid-way at 500 time-step. The average discovery
consistencies after the failures occur are shown.

We can see that the failures of clients almost have no impact
on the discovery consistency of the system, as should be
expected given a client’s light role in the system. However,
failures of relays are more serious when the concurrent failures
exceeds 5 under cluster movement. Discovery consistency
would drop to as low as 80% and do not seem to be restoring.
Failures of relays under random movements however recover
better, even for 20 concurrent failures. Fig. 7(c) shows the
time-series of the scenario of 20 concurrent node failures for

both relays and clients under both movement models. Even
under such severe failures, the consistency recovers in 300
time-steps (i.e., 3 seconds) for relays under random movement.
The difference in recovery may be due to that in cluster
movements, concurrent failures of relays are more likely to
take down all the AOI neighbors of a given client, thus creating
an overlay partition. However, this also shows that by keeping
a few random neighbors outside the AOI, tolerance of against
relay failures may greatly improve.

V. CONCLUSION

In this paper we present VAST, a generic P2P overlay that
supports spatial publish / subscribe (SPS) operations for virtual
environment applications. VAST is designed to be practical,
by utilizing a super-peer based design; flexible, by supporting
SPS operations; and efficient, by considering network topology
for quick message deliveries. By utilizing a Voronoi-based
Overlay Network (VON), we design a method to support SPS
in a distributed and low-latency manner. From our simulations,
we show that VAST can effectively support a crowded Second
Life region, by lowering the bandwidth usage at the server, and
the communication latencies between clients, all under current
residential ADSL environment.

While the basic performance, correctness, and fault toler-
ance of VAST has been investigated, we still have not yet
evaluated its load balancing mechanisms, which will be our
primary future work. Full area publications have also not been
investigated, while whether publication message redundancy
can be avoided should be investigated in-depth. VAST opens
up many interesting design possibilities that are worthy of
further investigations, for example:
• Improvement in fault tolerance, where maintaining a few

random non-AOI neighbors may help a node to sustain
better of relay failures.

• Minimal relay-to-relay forwarding, where due to the tri-
angular inequality on the Internet, a message may achieve
even shorter latencies via a third relay.

• The decision for the optimal relay size, given certain
application-specific bandwidth and latency limits.

• The alleviation of load during initial relay join, so that
gateway’s loading is not increased with a few initial
relays.

• More efficient handling of relay failure, such that clients
experience minimal delay during relay fail.

REFERENCES

[1] S. Singhal and M. Zyda, Networked Virtual Environments, 1999.
[2] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual

world,” in PDPTA, 2003.
[3] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer

network for virtual environments,” IEEE Network, vol. 20, no. 4, pp.
22–31, 2006.

[4] B. Knutsson et al., “Peer-to-peer support for massively multiplayer
games,” in INFOCOM, 2004, pp. 96–107.

[5] A. Bharambe et al., “Colyseus: A distributed architecture for multiplayer
games,” in NSDI, 2006.

[6] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games,” in Proc. SIGCOMM, 2008.

[7] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state management
for peer-to-peer massively multiplayer online games,” in Proc. 5th
Annual IEEE Consumer Communications and Networking Conference
(CCNC), 4th IEEE Intl. Workshop on Networking Issues in Multimedia
Entertainment (NIME), 2008, pp. 1134–1138.

[8] L. S. Liu and R. Zimmermann, “Immersive peer-to-peer audio streaming
platform for massive online games,” in Proc. 3rd IEEE Consumer
Communications and Networking Conference (CCNC 2006), 2006, pp.
1229–1233.

[9] J.-R. Jiang and H.-S. Chen, “Peer-to-peer aoi voice chatting for mas-
sively multiplayer online games,” in Proc. International Workshop on
Peer-to-Peer Network Virtual Environments, 2007.

[10] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang, and B.-
Y. Chen, “Flod: A framework for peer-to-peer 3d streaming,” in Proc.
INFOCOM, 2008.

[11] J. Royan, P. Gioia, R. Cavagna, and C. Bouville, “Network-based
visualization of 3d landscapes and city models,” IEEE CG&A, vol. 27,
no. 6, pp. 70–79, 2007.

[12] J. Botev, A. Hohfeld, H. Schloss, I. Scholtes, P. Sturm, and M. Esch,
“The hyperverse: concepts for a federated and torrent-based ’3d web’,”
International Journal of Advanced Media and Communication (IJAMC),
vol. 2, no. 4, pp. 331–350, 2008.

[13] S.-Y. Hu, “Spatial publish subscribe,” in Proc. IEEE Virtual Reality
(IEEE VR) Workshop MMVE, 2009.

[14] M. Esch, J. Botev, H. Schloss, and I. Scholtes, “Gp3 - a distributed
grid-based spatial index infrastructure for massive multiuser virtual
environments,” in Proc. P2P-NVE, 2008.

[15] K. Kim, I. Yeom, and J. Lee, “Hyms: A hybrid mmog server architec-
ture,” IEICE Trans. Info. and Sys., vol. E87-D, no. 12, 2004.

[16] E. Buyukkaya, M. Abdallah, and R. Cavagna, “Vorogame: A hybrid p2p
architecture for massively multiplayer games,” in Proc. IEEE CCNC,
2009.

[17] T. Sweeney, “Unreal networking architecture,”
http://unreal.epicgames.com/network.htm, 1999.

[18] T. Alexander, Massively Multiplayer Game Development. Charles River
Media, 2003.

[19] P. Bettner and M. Terrano, “1500 archers on a 28.8: Network program-
ming in age of empires and beyond,” Proc. GDC, 2001.

[20] G. Schiele et al., “Requirements of peer-to-peer-based massively multi-
player online gaming,” in Proc. GPC, 2007.

[21] P. Rosedale and C. Ondrejka, “Enabling player-created online worlds
with grid computing and streaming,” Gamasutra Resource Guide, 2003.

[22] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in Proc. IEEE INFOCOM, 2002.

[23] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. SIGCOMM, 2004.

[24] F. Aurenhammer, “Voronoi diagrams-a survey of a fundamental geomet-
ric data structure,” ACM CSUR, vol. 23, no. 3, pp. 345–405, 1991.

[25] J.-R. Jiang, Y.-L. Huang, and S.-Y. Hu, “Scalable aoi-cast for peer-to-
peer networked virtual environments,” in ICDCS Workshops, 2008.

[26] M. Varvello, F. Picconi, C. Diot, and E. Biersack, “Is there life in second
life?” in Proc. CoNEXT, 2008.

[27] P. Morillo et al., “Providing full awareness to distributed virtual envi-
ronments based on peer-to-peer architectures,” LNCS, vol. 4035, 2006.

