
Voronoi State Management for P2P MMOGs

Shun-Yun Hu, Shao-Chen Chang, Jehn-Ruey Jiang
Department of Computer Science and Information Engineering

National Central University, Taiwan, R.O.C.
syhu@yahoo.com, cscxcs@gmail.com, jrjiang@csie.ncu.edu.tw

ABSTRACT
State management is a basic requirement for multi-user vir-
tual environments (VEs) such as Massively Multiplayer On-
line Games (MMOGs). Current MMOGs rely on centralized
server-clusters that possess inherent scalability bottlenecks
and are expensive to adopt and deploy. In this concept pa-
per, we propose Voronoi State Management (VSM) to main-
tain object states for peer-to-peer-based virtual worlds. By
dynamically partitioning the virtual world with Voronoi dia-
grams and performing localized replication for game states,
VSM supports existing consistency control to enable scal-
able, load balanced, and fault tolerant VE state manage-
ment. As both client and server-side resources are utilized
collaboratively, VSM also integrates both client-server and
peer-to-peer VE designs in a unified approach.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms
Algorithms

Keywords
peer-to-peer, virtual environment, online games, state man-
agement, Voronoi, scalability, load balancing, fault tolerance

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs), where

up to hundreds of thousands of players assume virtual iden-
tities known as avatars to interact in computer-generated
virtual environments (VEs) [31], have in recent years seen
phenomenal commercial success and cultural impacts. The
scalability of today’s MMOGs is maintained by using a num-
ber of dedicated servers linked together on high-speed net-
works to form a server-cluster. However, server-cluster ar-
chitectures cost millions of dollars to develop, deploy, and
maintain [19], and the total amount of resources is still lim-
ited at any given moment. Some recent proposals [5, 14,
17, 18] thus suggest the use of peer-to-peer (P2P) architec-
tures to support MMOGs that may be more scalable and
affordable.

One fundamental requirement for MMOGs is the main-
tenance of game states, which are the various attributes of
game objects such as the locations, possessions, and current

status of avatars and computer-controlled non-player char-
acters (NPCs). In a server-cluster architecture, game states
are stored authoritatively at the servers, and are updated
according to game-specific rules called game logic. For a
P2P-based MMOG (P2P MMOG), the design goal thus is to
distribute game states maintenance from centralized servers
to participating clients, while ensuring consistent views of
the world and balanced workloads for all nodes. However,
although proposals have been made to maintain the topology
of a P2P network based on avatars’ positions, few has yet
addressed comprehensively the management of game states.
Furthermore, P2P schemes pose other practical challenges,
namely: heterogeneity, where not all clients have the same
resources to support similar behaviors; churn, where clients
constantly join and leave the network; and hacking, where a
client’s behavior is modified to cheat or disrupt gameplay.

We propose a P2P-based game state management scheme
called Voronoi State Management (VSM) that considers both
client heterogeneity and churn. VSM partitions the VE into
a number of regions via Voronoi diagrams [3], and promotes
capable clients as arbitrators to handle state management in
a given region. To balance arbitrators’ loads, VSM dynami-
cally adjust region boundaries and insert new arbitrators as
needed. By replicating game states in nearby regions, suffi-
cient fault tolerance and efficient consistency control can be
achieved, which are important given the dynamics of P2P
networks and the real-time requirements of MMOGs.

The contributions of this paper are the analysis of current
MMOG state management schemes, and the proposal of the
VSM algorithm. We show that VSM can be a practical ap-
proach fulfilling the consistency, responsiveness, scalability,
and reliability requirements for MMOG state management,
and can be easily integrated with server-cluster architec-
tures, thus providing a bridging transition from client-server
to P2P-based MMOGs.

The rest of this paper is organized as follows. Section
2 provides background on MMOGs and server-cluster state
management. Section 3 presents a model for the state man-
agement problem. We describe VSM’s design in Section 4,
and conclude the paper with some discussions in Section 5.

2. BACKGROUND

2.1 Characteristics of MMOGs
MMOG is a relatively new genre of computer games that

is characterized by a large number of concurrent users within
the same virtual world [1, 18]. Game-play in MMOGs usu-
ally surround a fantasy setting, where players assume iden-



tities of diverse races and occupations, and may enhance
their avatars’ equipments and skills by carrying out quests.
Computer-controlled NPCs often populate a MMOG to act
as virtual citizens that provide information, trades, or fight-
ing opportunities. Similar to other large-scale VEs [31, 32],
MMOGs have the following set of requirements:
Consistency A basic requirement for multiplayer games is
to allow players at different physical locations to interact
within a shared space. To allow meaningful interactions, a
player’s action must be seen by other nearby observers in
consistent manners. Consistency between players’ individ-
ual views of the world is achieved through the passing and
processing of event messages, which update each clients of
the current states of the system. However, packet loss, jitter
and latency all may degrade the consistency of games.
Responsiveness Games are real-time applications where
players expect to see the effects of their own actions and
that of other players within a reasonable amount of time.
However, network latency and processing delay may pre-
vent a game to be responsive. Latency tolerance varies for
different game genres [32], and is typically between 500ms
to 1000ms for MMOGs [12].
Security MMOGs retain user accounts for authentication
and billing purposes, such data thus must be securely stored.
Additionally, as the entertainment value rests on the fair and
correct execution of game rules, cheating or malicious game-
play must be prevented, detected, and stopped. As client
programs may be hacked to produce illegal behaviors, most
MMOGs retain the execution of game logic exclusively at the
servers, and use the clients only as terminals for displaying
the results of server-side game logic executions.
Scalability In a MMOG context, scalability refers to the
ability of the system to sustain a large number of concurrent
users within the same world. A system’s scalability usually
depends on factors such as the server’s total bandwidth and
processing capacity, the amount of activities occurring, and
player densities in a region. However, the prevailing factor
for scalability is whether resource usage is bounded at each
system component for both clients and servers [14].
Persistency One key characteristic of MMOGs is to allow
access to the virtual world 24 hours a day. Players may
log in and out of the server at any time, while retaining
their inventory and status (e.g. levels, experience points,
and currency). Persistency is usually provided by transac-
tional databases that keep continuous records of all impor-
tant game state updates.
Reliability As a MMOG scales and persists, it must also
be fault tolerant to accidental software or hardware failures,
as well as live updates of software or contents, in order to
provide smooth and continuous play experiences. In case of
a server crash, normal operations must be resumed quickly
without noticeable disturbance. Roll-back recovery of the
game states from database may also be required sometimes.

In this paper we will consider all the above requirements
except for security and persistency, which are separately ad-
dressed in other work [6].

2.2 Networking and Consistency Models
Games can be seen as finite state machines where user in-

puts or game semantics (such as NPC behavior) cause events
to be generated and game states subsequently modified ac-
cording to game logic. For example, a rule may state that:
“A player gains 30 experience points and 1 point in agility if

the avatar has run for 3 minutes”. State updates therefore
can be understood as a trigger - process - display sequence.

Networked games additionally can be understood from
their networking model (i.e. how nodes connect and commu-
nicate) and consistency model (i.e. how game state updates
are maintained across nodes). For networking, the two main
architectures are point-to-point (also traditionally known as
peer-to-peer, for clarity, we will refer it as point-to-point
in this paper) and client-server (which includes both single
servers and server-clusters). In point-to-point, all nodes are
fully-connected to each other where messages generated by
any node are sent to all other nodes. Point-to-point does
not scale well as overall transmissions grow at O(n2). In
client-server, event messages from all client nodes are sent
to a special server node, which would then redistribute the
messages according to the clients’ individual needs, making
overall transmission grow at O(n) [31].

Two main consistency models also exist in today’s net-
worked games based on where game logic is executed: event-
based and update-based models. Event-based model requires
that all nodes have the full set of game states and perform
the same game logic [4]. When an event occurs, it is re-
ceived and processed by all nodes. As long as each node has
the same set of states and that events are processed in more
or less the same order (depending on consistency require-
ments), game states would update consistently on all nodes.
As executing events in the same order by all nodes is cru-
cial to guarantee consistency, synchronization schemes have
been proposed that include both conservative ones such as
lock-step, or optimistic ones such as Time Wrap and trailing
state synchronization (TSS) [10, 13].

On the other hand, in update-based model, a server node
retains the entire set of game states and is the only node
that performs game logic execution. Clients send events to
the server instead of to all other clients, and receive state
updates relevant to their current interests [33]. Consistency
is achieved as long as client-side replicas of the game objects
are more or less in sync with the server’s primaries by re-
ceiving relevant updates in a timely manner. In this model,
both the server and clients maintain game states, with the
difference that the server’s version may be global (i.e. it has
all the states) and authoritative, while the clients’ states are
local (i.e. only what is visible to current gameplay is main-
tained) and referential (i.e. game states could be corrected
if deviated from the server’s version).

Event-based models often coincide with point-to-point net-
working, whereas update-based models are often used with
client-server. Event-based models are more responsive as
messages need not be relayed, and suitable for games where
the entire set of game states is needed by each node, yet
too large to update (as in real-time strategy, or RTS games,
where thousands of states change constantly) [4]. Update-
based is suitable if clients only need a subset of game states
to operate, or if game logic is preferred to be executed by a
single authority. Current MMOGs adopt client-server with
update-based consistency control, as clients only need par-
tial game states and security is more easily guaranteed.

2.3 MMOG Server-cluster Designs
One common way used by the game industry to increase

the number of players of a MMOG is to provide players par-
allel access to duplicated worlds (called shards), where each
world is essentially a separate environment with a limit to



the number of concurrent users (e.g. between 2000 and 2500
[19]). Players then choose which shard to enter upon login.
However, this approach lessens realism and limits social in-
teractions as players cannot communicate across shards [29].

To scale a single virtual world, three main types of server-
cluster exist based on how game states are distributed: 1)
replication-based, where the servers themselves form a point-
to-point topology and game states are fully replicated among
servers (e.g. proxy-servers [23, 24] and mirror-servers [10]);
2) object-based [20, 21, 22], where game objects are dis-
tributed evenly among servers; and 3) zone-based [9, 11,
16, 29], where game objects are assigned via spatial parti-
tioning.

Replication-based schemes have the advantage that events
from be any player can be processed by any server, so play-
ers can connect to the server with minimal latency. They
also allow more flexible load balancing, as overloaded servers
can migrate players to any other server in the cluster. How-
ever, the point-to-point communication makes it unscalable.
Object-based approaches usually attempt to split objects as
evenly as possible on the servers (the most common are ob-
jects representing the players). This allows load balancing
to be simply finding ways to distribute objects evenly. How-
ever, as any event may affect an unpredictable number of ob-
jects, inter-server communication can become unpredictable.
A zoned approach, on the other hand, keep most of the event
processing local unless the events occur near zone borders,
inter-server communication thus can be constant for a given
player density, achieving better scalability. However, cross-
border interactions may involve locks for zones or objects
that could be time-consuming [2].

Given the better scalability of zone-based approaches, to-
day they are more widely adopted in practice. However,
three inter-related issues must be addressed: 1) how to par-
tition the world, 2) how to balance work load among servers,
as users may crowd within a particular zone and overload
the server, and 3) how to maintain visibility and interactions
across zone borders in consistent manners.

Existing partitioning schemes may be static such as grids
[2, 8, 26, 29], or dynamic such as strips [11], quad-tree
[16], or other irregular shapes [9, 28]. For balancing the
load, load detections are first done by periodically monitor-
ing CPU or bandwidth usage [8]. Once abnormality is de-
tected, load reassignment is performed to determine if zones
should be repartitioned, or if objects need to be migrated to
other servers. Global schemes recalculate load assignments
based on the loads from all servers [20, 21, 22], whereas lo-
cal schemes consider boundary shifting or load migrations
only with neighbors [8, 26]. Local schemes are more effi-
cient in terms of computation and migration costs, however,
load migration would not occur when neighboring servers
are also overloaded. On the other hand, global schemes
can better utilize resources as loads can be migrated to any
available server. However, global information collection and
optimization are time-consuming and may not be practi-
cal under MMOGs’ real-time constrains. Additionally, if a
server handles discontinuous zones as a result of load migra-
tion, inter-server communication could increase [8]. Neither
approach thus addresses load balancing satisfactorily.

To provide visibility across zone borders, replicas may be
created for near-border objects. To ensure update atomicity,
border objects may be locked for events that update more
than one objects across borders [2] (e.g. when a player hands

an item to another player, see also “Seamless Servers: The
Case For and Against” in [1]). Consistent and transactional
updates thus are possible at the cost of increased delays.

In general, server-cluster load balancing faces the tradeoff
between balancing computation load and minimizing inter-
server communications [8, 21]. Besides load balancing, con-
sistency maintenance during load migration is another issue
that needs to be considered [2, 15], while little published
work has been done on fault tolerance.

3. PROBLEM FORMULATION
In this section, we present a general problem formulation

for state management in VE applications. We use the fol-
lowing assumptions about a VE system:

1. The world is a 2D plane with fixed width and height.
2. Attributes are tuples of the form (type, name, value),

where a type is a basic data-type such as int, char, float,
or string. They are the basic encapsulations of game states.

3. Objects consist of tuples of the form (name, attributes,
x, y), where x and y are the x and y coordinates of the
object’s location within the VE, and attributes is a list of
attributes associated with the object. Objects are the basic
units representing players, NPCs, or items and may change
locations via player inputs or game logic executions.

4. Objects are created, updated, and destroyed by events,
which are messages initiated by players or NPC algorithms,
and are processed according to game-specific game logic.

5. Each player controls an avatar object, which has a fixed
and game-specific area of interest (AOI) radius [31], within
which interactions occur (i.e. an avatar is only aware of
object updates in its AOI; likewise, events can only impact
objects within the AOI of the avatar that creates them).

Given the above, we define below the requirements for a
P2P MMOG, based on the requirements for MMOGs. Note
that persistency and security are beyond our scope.
Consistency Consistency of object states is the most basic
requirement for VE applications. In a P2P setting where
peers may manage different regions, consistency and visibil-
ity across regions should be guaranteed. To achieve consis-
tency, all peers responsible to execute game logic and update
object states, should do so based on consistent knowledge of
the game states and event ordering.
Responsiveness As prolonged latency could render a game
unplayable to users [32], the maximum number of end-to-end
transmission hops should be limited, such that there is only
a bounded number of message transfers between peers in
any trigger - process - display sequence.
Scalability When game logic processing load is distributed
over peers, the system scales well if the resources usage is
always bounded within capacity. We thus pose two require-
ments: 1) the resources for processing game logic should
increase with player size, and 2) the processing and trans-
mission load for each peer should be balanced and bounded.
Reliability As node availability in P2P networks is less
stable than that of a server-cluster, one important require-
ment is that the entire system may still function despite of
frequent node joining and leaving. Fault tolerance against
node failures thus is essential.

4. VORONOI STATE MANAGEMENT
As existing server-cluster approaches may not effectively

deal with system scalability and load balancing, while P2P



Figure 1: (left) VSM (right) virtual peers

approaches have yet to offer practical ways to manage game
states, we thus seek to address both issues by proposing
Voronoi State Management (VSM). In this section, we first
describe VSM’s main components: Voronoi partitioning, lo-
calized replication, and transactional topology modification.
Procedures and policies of VSM are then presented.

4.1 Design of VSM
Voronoi partitioning Our aim is to allow object states be
managed collaboratively by both the server and the clients
in a seamless way. We begin with the observation that the
nodes in existing P2P networks are highly heterogenous [30],
which suggest that designating more capable nodes as su-
pernodes may be more practical than assuming equal capac-
ities. The basic idea of our design is to partition the VE
into a number of small regions, and promote a certain num-
ber of capable clients as the arbitrators for each region. An
arbitrator manages a region by performing tasks similarly
to a server in client-server architectures. Each client ma-
chine thus may assume two roles: as a regular peer, or as an
arbitrator, with independent functionalities. Ideally, game
developers only need to consider client-server-like interac-
tions between game objects, while consistency, load balanc-
ing, and fault tolerance issues are taken care of by VSM.

Arbitrators assume fixed locations within the VE, and
serve as the sites of a Voronoi diagram [3]. Voronoi diagram
partitions a given 2D plane with n sites (i.e. a coordinate
point) into n regions. Each site is associated with a region
such that the region contains all the points closest the re-
gion’s site than to any other site. We require that each arbi-
trator be responsible to maintain the authoritative versions
of objects within its region (i.e. as object owners, whose
ownerships are transferred by explicit messages. See Fig. 1,
where squares represent arbitrators and triangles represent
game objects). Localized load balancing is performed by 1)
adjusting region boundaries via site movements to produce
region shapes that may accommodate player clustering or 2)
inserting new arbitrators within overloaded regions. Object
states are stored authoritatively at the managing arbitrator,
which is the arbitrator whose region contains the positions
of objects. At any moment, a peer connects only with its
managing arbitrator to learn of object states within its AOI.

To provide initial arbitrators before any clients have joined
the system, a gateway server first sets up virtual peers (Fig.
1) that act as arbitrators positioned at regularly-spaced lo-
cations. As clients enter the VE, the roles of arbitrators
may then be taken up by clients when virtual peers are over-
loaded and require new arbitrators be added. The existence
of virtual peers also helps to reduce region size to be more
manageable, so that game states may migrate to newly pro-
moted arbitrators in an incremental manner.
Localized replication To support visibility across regions

Figure 2: (left) no violation (right) violation

for clients and fault tolerance, object states are fully repli-
cated on all the enclosing arbitrators, which are neighboring
arbitrators whose regions have shared edges with a man-
aging arbitrator. If an arbitrator fails, its enclosing arbi-
trators could immediately take over the state management
tasks for the failed arbitrator upon detection. Besides the
support of fault tolerance, another important function repli-
cation serves is to support existing event-based consistency
models. By fully replicating game states on enclosing ar-
bitrators, any arbitrator plus its enclosing arbitrators thus
resemble a point-to-point network on a local scale. This al-
lows any existing event-based consistency control be used
by VSM (e.g. lock-step, Time Wrap [13], or TSS [10]), as
long as the game states that may be affected by an event are
available on all the arbitrators handling the event. Efficient
consistency control can thus be supported without the need
to use any time-consuming cross-region locks that could de-
grade the responsiveness of a game. This also allows appli-
cations be developed in a client-server style, without having
to concern the actual object distribution across regions.
Transactional topology modification The above con-
sistency control requires that an event can never influence
game objects beyond those managed by the enclosing arbi-
trators, otherwise an event may be processed by an arbi-
trator that does not have the complete set of game states
necessary to produce consistent updates. In other words,
a peer’s AOI should never cross beyond the regions of its
enclosing arbitrators. To avoid such scenarios, no edge of a
given region can be less than the diameter of a peer’s AOI
(Fig. 2). This requires that all the edges in the Voronoi
diagram to be minimally longer than the AOI diameter of
a peer (e.g. a minimal edge-length Voronoi diagram). To
ensure that all edges are longer than a certain length, any
additions, updates, and removals of Voronoi sites (i.e. the
arbitrator’s positions) must be transactional, in the sense
that they should not occur unless all the enclosing arbitra-
tors around a proposed change have verified and agreed. To
prevent violations due to arbitrator failures, one of the en-
closing arbitrators of a failed arbitrator would assume man-
aging responsibility immediately upon detection, so that the
overlay topology may be intact. A new arbitrator should
then be requested from the gateway server to replace the
failed one. Note that topology changes are usually not fre-
quent and occur only as needed for load balancing purposes.

We choose Voronoi-based Overlay Network (VON) [14] as
the P2P overlay for arbitrators, as VON provides simple
functions to allow an arbitrator to join or move within a
P2P overlay, and discover enclosing arbitrators efficiently
with one-hop queries.

4.2 Procedures
We now describe in details the main procedures of VSM,



including peer join, event update, peer movement, load bal-
ance, and fault tolerance (node leave).
Peer Join (JOIN) When a peer first joins the VE, it con-
tacts the gateway server for a unique ID and reports its
capability to the gateway, so that future promotion as ar-
bitrator is possible. The gateway then forwards a join re-
quest to the first managing arbitrator via greedy forwards.
The gateway itself controls at least one arbitrator (via vir-
tual peer), so it knows some enclosing arbitrators for the
forwarding. Once a join request is received, the managing
arbitrator sends the peer a list of its enclosing arbitrators
and initial object states within the peer’s AOI.
Event Update (UPDATE) Currently a simple lock-step
protocol [13] is used to process events: a peer first sends an
event message to its managing arbitrator, which then times-
tamps and forwards the event to its own event queue and
those of its enclosing arbitrators whose regions overlap with
the peer’s AOI. This ensures that the managing arbitrators
of any objects affected by the event can receive the event
properly. As the enclosing arbitrators already have complete
object replicas within the peer’s AOI, they could update the
states consistently given the same event execution order. To
guarantee consistent event ordering, arbitrators only process
events with timestamps before the minimal time among the
latest timestamped events received from their enclosing ar-
bitrators. To prevent stalling when an arbitrator has no
events to send, tick events are sent as heartbeats to notify
enclosing arbitrators to progress the time.

Once an event is executed, the managing arbitrator (i.e.
owner) of any affected objects forward updated states to 1)
all interested peers whose AOI cover the object, and 2) its
own enclosing arbitrators, so that any enclosing arbitrators
that did not process relevant events may still keep their ob-
ject replicas up-to-date. Every time an object changes states
due to an event, its version number would increment. Ar-
bitrators thus accept updates from a neighbor only if the
version is more current than its own.
Peer Movement (MOVE) Peers may enter new regions
as they move. To ensure proper region-switching, each peer
maintains a list of the enclosing arbitrators of its current
managing arbitrator, which is learned every time when en-
tering a new region. Whenever a peer receive new position
updates from its managing arbitrator (as a result of move-
ment events), it checks whether the new position is now in a
new region. If so, it connects to the new managing arbitrator
and disconnects the previous one.
Load Balance (BALANCE) One difficult issue with any
partitioning scheme is the balance of workload within each
region, as workload may change as players move or the ac-
tivity levels within the region vary. To address this issue,
we adopt two strategies: 1) reshaping the region, and 2)
adding new arbitrators to the overloaded region. When a
given arbitrator is overloaded (according to certain crite-
ria), help requests are sent to its enclosing arbitrators, which
would move closer towards the overloaded node if they have
spare capacities. Changing arbitrator coordinates towards
the overloaded node reduces the overloaded arbitrator’s re-
gion. Transfer of object states from the overloaded node to
its neighbors could then start. If the first approach does
not relieve the load after some time, the gateway is asked
to insert an additional arbitrator. The gateway picks and
promotes the best candidate from a list of potential peers as
the new arbitrator. Inserting a new arbitrator to an over-

loaded region could then relive state management responsi-
bility from the overloaded node. In case no suitable peers
are found, the server may insert a virtual peer. In a similar
spirit, if an arbitrator is underloaded, it first notifies enclos-
ing arbitrators to move away. If the underload persists, it
would depart from the network as an arbitrator. Object
ownerships are transferred to enclosing arbitrators before
the departure. When a newly elected arbitrator joins the
VE, it receives both the relevant states and pending events
from its enclosing arbitrators before becoming operational.
Game states are transferred reliably before events, to ensure
that event processing will be based on the full set of game
states. As arbitrators process only “safe” events in our con-
sistency model, the new arbitrator is not able to process any
events until all pending events (and therefore states) have
been received from its enclosing arbitrators, thus ensuring
the correctness and continuity of event processing.

As changes to the Voronoi diagram should not violate the
minimal edge-length requirement, arbitrator insertions or
movements must be checked and agreed by all enclosing ar-
bitrators. To ensure that object ownerships are correct, an
arbitrator constantly checks if the objects it owns is in an-
other region, and if so, it transfers ownerships accordingly.
Fault Tolerance (LEAVE) When a peer leaves the VE,
it simply does so, as its managing arbitrator can detect the
departure via time-out, remove its avatar object, and notify
other peers. For arbitrator failure, one of its enclosing ar-
bitrators (e.g. the closest based on positions) immediately
assumes object ownerships after detection as a transient ar-
bitrator, and calls the gateway for a replacement arbitra-
tor. The replacement joins the network similarly as outlined
in the BALANCE procedure, and assumes ownerships once
all object states and events are received. Meanwhile, peers
would connect first to the transient arbitrator, and then the
replacement arbitrator, to send events and receive updates.

4.3 Policies
Certain operations in VSM are open to various strategies

and are best governed by policies that could change with
requirements. Two such polices are described below.
Boundary Adjustments As object migrations should oc-
cur after adjustments, boundaries closer to clustered objects
should be adjusted with priority. Adjustments should also
be incremental so that disruptions are minimized. VSM
currently involves all enclosing arbitrators where each arbi-
trator would move towards or away from a requesting arbi-
trator a fixed distance between them. To avoid boundary
threshing, an arbitrator may temporarily ignore a request if
its own boundaries also require adjustments.
Arbitrator Insertions Excessive load migrations may re-
sult if a new arbitrator is placed at a crowded region, while
placement at a sparse region will not help to relieve load.
Choosing the right position therefore can be delicate. We
observe that the intersection of Voronoi edges represents an
equidistant point to all the surrounding arbitrators, and may
equalize object transfer costs among neighboring arbitra-
tors. Our current policy thus is to insert new arbitrators at
one of such intersections. In case no such point exists (for
regions near the boundary of the map), the projections of
an overloaded arbitrator’s x and y coordinates to the bound-
aries are then selected.

5. DISCUSSIONS AND CONCLUSION



VSM supports existing event-based consistency control
via localized replication of game states. It is responsive as
any trigger - process - display sequence takes at most three
end-to-end hops (i.e. peer → managing arbitrator → enclos-
ing arbitrator → peers in nearby region). With event-based
consistency control, no object locking is necessary even for
cross-border interactions. VSM can scale as client resources
can be added to the system, while dynamic region adjust-
ments help to balance loads. Fault tolerance is supported
by state replications on enclosing arbitrators, which may
immediately assume managing responsibilities if nodes fail.
Finally, virtual peers allow resources from both servers and
clients to integrate seamlessly in the same framework, thus
providing a bridging transition towards P2P-based MMOGs.

Few work exists on state management for P2P VEs. Sim-
Mud [18] supports basic state management via supernodes
within fixed-size rectangular regions. VSM has gone fur-
ther to allow dynamic region partitioning, and proposes a
simple method to utilize existing consistency schemes. Col-
yseus [5] supports first person shooter (FPS) games based
on DHTs. However, the log(n) query in DHT prevents con-
tinuous object discoveries and may create unacceptable la-
tency for large node size, whereas VSM performs responsive
object discovery with bounded query hops by using VON
[14]. Voronoi partitioning for DHT overlays was proposed
by Naor and Wieder [25], although adjustments for node lo-
cations were not considered. Chen and Lee first suggested
the use of Voronoi for VE partitioning [7], but without de-
tailing actual designs. Ohnishi et al. [27] describe a Delau-
nay (dual of Voronoi diagrams) overlay for VEs, but without
considering state management.

We are now evaluating VSM via simulations with regard
to bandwidth usage and arbitrator placement policies. Min-
imal edge-length Voronoi is also a topic under investigations.

6. REFERENCES
[1] T. Alexander. Massively Multiplayer Game

Development. Charles River Media, 2003.

[2] M. Assiotis and V. Tzanov. A distributed architecture
for mmorpg. In Proc. Netgames, 2006.

[3] F. Aurenhammer. Voronoi diagrams-a survey of a
fundamental geometric data structure. ACM CSUR,
23(3):345–405, 1991.

[4] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in age of empires and beyond.
Proc. GDC, 2001.

[5] A. Bharambe et al. Colyseus: A distributed
architecture for multiplayer games. In NSDI, 2006.

[6] M.-C. Chan et al. An efficient and secure event
signature (eases) protocol for peer-to-peer massively
multiplayer online games. In Proc. Networking, 2007.

[7] C.-C. Chen and C.-J. Lee. A dynamic load balancing
model for the multi-server online game systems. In
HPC Asia, Poster, 2004.

[8] J. Chen et al. Locality aware dynamic load
management for massively multiplayer games. In Proc.
PPoPP, pages 289–300, 2005.

[9] R. Chertov and S. Fahmy. Optimistic load balancing
in a distributed virtual environment. In Proc.
NOSSDAV, 2006.

[10] E. Cronin et al. An efficient synchronization
mechanism for mirrored game architectures. MT & A,

23(1):7–30, May 2004.

[11] E. Deelman and B. K. Szymanski. Dynamic load
balancing in parallel discrete event simulation for
spatially explicit problems. 1998.

[12] T. Fritsch et al. The effect of latency and network
limitations on mmorpgs: a field study of everquest2.
In Proc. Netgames, pages 1–9, 2005.

[13] R. M. Fujimoto. Parallel discrete event simulation.
CACM, 33(10):30–53, October 1990.

[14] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: A
scalable peer-to-peer network for virtual
environments. IEEE Network, 20(4):22–31, 2006.

[15] J.-Y. Huang et al. Design of the server cluster to
support avatar migration. In Prof. VR, 2003.

[16] J.-Y. Huang and M.-Y. Tsai. The study of dynamic
scene management for massive-players virtual
environment. In Proc. CVGIP, August 2005.

[17] J. Keller and G. Simon. Solipsis: A massively
multi-participant virtual world. In PDPTA, 2003.

[18] B. Knutsson et al. Peer-to-peer support for massively
multiplayer games. In INFOCOM, pages 96–107, 2004.

[19] D. Kushner. Engineering everquest. IEEE Spectrum,
42(7):34–39, July 2005.

[20] F. Lu et al. Load balancing for massively multiplayer
online games. In Proc. Netgames, 2006.

[21] J. C. S. Lui and M. F. Chan. An efficient partitioning
algorithm for distributed virtual environment systems.
IEEE TPDS, 13(3):193–211, March 2002.

[22] P. Morillo et al. An adaptive load balancing technique
for distributed virtual environment systems. In Proc.
IASTED ICPDCS, pages 256–261, November 2003.

[23] J. Muller et al. A proxy server-network for real-time
computer games. LNCS, 3149:606–613, 2004.

[24] J. Muller and S. Gorlatch. Rokkatan: scaling an rts
game design to the massively multiplayer realm. ACM
CIE, 4(3), 2006.

[25] M. Naor and U. Wieder. Novel architectures for p2p
applications: the continuous-discrete approach. In
Proc. ACM SPAA, pages 50–59, 2003.

[26] B. Ng et al. Multi-server support for large scale
distributed virtual environments. IEEE TMM,
7(6):1054–1065, December 2005.

[27] M. Ohnishi et al. Incremental construction of
delaunay overlaid network for virtual collaborative
space. In Proc. C5, pages 77–84, 2005.

[28] S. Pekkola et al. Collaborative virtual environments in
the year of the dragon. In CVE, pages 11–18, 2000.

[29] P. Rosedale and C. Ondrejka. Enabling player-created
online worlds with grid computing and streaming.
Gamasutra Resource Guide, 2003.

[30] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. MMCN, January 2002.

[31] S. Singhal and M. Zyda. Networked Virtual
Environments. ACM Press, 1999.

[32] J. Smed et al. Aspects of networking in multiplayer
computer games. In Proc. ADCOG, pages 74–81, 2001.

[33] T. Sweeney. Unreal networking architecture.
http://unreal.epicgames.com/network.htm, 1999.


