
VSO: Self-organizing Spatial Publish Subscribe

Shun-Yun Hu and Kuan-Ta Chen

Institute of Information Science

Academia Sinica

Taiwan, R.O.C.

Email: {syhu, swc}@iis.sinica.edu.tw

Abstract—Spatial publish subscribe (SPS) is a basic primitive
underlying many real-time, interactive applications such as
online games or discrete-time simulations. Supporting SPS on
a large-scale, however, requires sufficient resources and proper
load distribution among the simulation units. For load distribu-
tion, existing mechanisms either use a static partitioning, such
that over-provisioning or overloading are bound to occur, or
require manual adjustments unsuitable for massive workloads.

We describe Voronoi Self-organizing Overlay (VSO) [1],
which extends a Voronoi-based Overlay network (VON) to
automatically partition and manage a logical space to support
SPS. Efficient resource usage thus is possible as only the
units necessary to maintain the system are used. Load is also
balanced among the resource units so that overloading or over-
provisioning can be avoided. We use simulations to verify our
design and describe some preliminary results.

I. INTRODUCTION

Spatial simulations are computing environments that allow

independent entities with coordinates to move within a coor-

dinate space, according to certain rules and the progression

of a logical time. From the rigid-body and molecular dynam-

ics (MD) simulations in physics, to discrete-time military

simulations, to virtual worlds (e.g., Massively Multiplayer

Online Games, or MMOGs), examples of spatial simula-

tions abound and are important to provide understanding or

interactions in otherwise expensive or impossible scenarios.

Underlying various simulations is a common requirement

to know other entities within a certain range (referred

hereafter as the area of interest, or AOI of an entity), and

the ability to exchange messages with them. For example, in

a MMOG, players need to know their AOI neighbors (i.e.,

other players within visibility [2]) so that the positions and

actions of these neighbors can be properly displayed.

Such requirements can be supported by either a spatial

query (i.e., finding all entities within a space) [3], [4] or a

spatial multicast (i.e., sending messages to all entities within

a space) [5], [6]. Although functionally similar, each has

its own merits and limitations. For example, in a military

simulation, both a radar and a foot soldier might detect an

incoming tank, though the radar likely has a longer sensing

range. To support this scenario, we could either use spatial

multicast to transmit the positions (and action events) of each

entities, or use spatial query periodically to find the entities

of interest. However, if we transmit the tank’s position via

Figure 1. Schematic for a 2D Spatial Publish Subscribe (SPS). Messages
are delivered between entities only if the publication areas (e.g., rectangles)
overlap with the subscription areas (e.g., circles). [7]

spatial multicast alone, finding a delivery range suitable to

both radars and soldiers can be non-trivial (e.g., a long range

for radars may be overkill for soldiers, while a short range

for soldiers may not be enough for radars). It is thus more

reasonable to let the radar and soldier perform spatial query

periodically for nearby entities, in order to properly see the

tank. However, if the tank fires a missile that can hit a far

away target, a potential target may not necessarily have the

right sensing/query range to detect and learn of the tank’s

firing action (e.g., an artillery whose sensing range is smaller

than the missile’s firing range, will not learn about the tank

and its firing action). Although we can also let the missile

to perform spatial query constantly to find entities it might

hit (and then notify the entities directly), such “query then

notify” introduces longer latencies than direct notifications,

which may not be desirable in latency-sensitive applications.

In this case, a spatial multicast is a better option, as the event

of the fired missile can simply be delivered along the firing

path to reach potential targets.

We suggest that both spatial query and spatial multicast

can be combined into a more general spatial publish sub-

scribe (SPS) [7] mechanism, where each entity indicates

its interest to receive updates (i.e., to subscribe) from a

specified space within the coordinate system, and sends

messages (i.e., to publish) to a specified space. An entity

will only receive a published message, if its subscription

space overlaps with the publication space of a message (see

Fig. 1). The simplest approach to support SPS is to let each

entity send its position updates to a central manager, and

have the manager to match and filter only relevant messages

back to each entity (i.e., performing interest management

[8] for each entity). However, the total amount of resources

of this manager determine the scale of the system. To

perform scalable SPS, interest matching needs to be divided

and assigned to different simulation units. To limit our

discussions, we will focus on discrete-time simulations with

strict latency requirements in 2D space, such as MMOGs, as

its requirements are one of the strongest. But we note that

our discussions can be generalized to higher dimensions and

other types of spatial simulations, especially those with more

relaxed accuracy or latency requirements.

Various techniques have been proposed to divide the

workload for spatial query or spatial multicast, from divi-

sions based on space or on entities (see [9] for a survey).

However, to the best of our knowledge, few approaches have

been described in literature on the actual design and evalua-

tion for the full SPS functionality. While the idea of SPS has

also been described by the Data Distribution Management

(DDM) section of the IEEE 1516 simulation specification

(the High Level Architecture, or HLA) [10], the specification

intentionally leaves out the implementation details. In this

paper, we describe Voronoi Self-organizing Overlay (VSO),

a spatial division approach to support SPS based on Voronoi

partitioning and self-organizing load balancing. The overall

effect is that only the resource units necessary to support

the system actually join the system, thus avoiding the over-

provisioning or over-loading issues commonly associated

with static partitioning.

II. BACKGROUND

A. SPS

Traditionally, the most basic form of publish/subscribe

(pub/sub) is channel-based (also called topic-based) [4],

[11], where receivers would subscribe to a particular channel

for messages sent by publishers to the channel. However,

in case for spatial messages, how to divide the space and

assign them to channels becomes problematic (i.e., how

to determine the right region size [12]). Spatial publish

/ subscribe (SPS) on the other hand, provides a simpler

concept for these operations. The simplest SPS supports the

subscriptions and publications of messages on an area. For

simplicity, we will discuss 2D space only in this paper. As

the smallest area is one with zero size (a point), SPS can be

also be specified with points. There are thus four main types

of SPS operations: 1) area subscription specifies an intention

to receive all messages published onto the area specified;

2) area publication sends a message to an area, receivable

by any subscribers whose subscribed areas overlap with the

publication areas; 3) point subscription intends to receive

any area publications that cover the point specified; 4) point

publication sends a message to a given point, receivable by

any area subscribers whose subscribed areas cover the point.

Figure 2. Quad-tree (left) vs. Voronoi (right) Partitioning.

Spatial partitioning is easier to understand and implement,

and requires less application-specific knowledge to general-

ize its use. Existing spatial partitioning methods, however,

either divides the virtual space in pre-defined manners (e.g.,

division by grids) which makes picking the right region size

difficult [12], or requires human intervention in specifying

the different region sizes. When the entity movement or

density changes in highly unexpected manners, or if a large

number of entities are simulated, such approaches become

unpractical and unsuitable. Ideally, if spatial divisions can

occur based on the density and distribution of the entities,

and adjust automatically as the density changes, then we

will have a system that is more flexible to deploy, and

more practical to manage. In this paper, such an approach is

described based on Voronoi partitioning [13], as it allows

fewer divisions of the space than alternative approaches,

especially when the entities’ spatial distribution is skewed.

For example, in Fig. 2, we see that for 50 entities around

a few clusters, if a region can accommodate at most 10

entities, a quad-tree-based partitioning would produce about

10 regions, while a Voronoi partitioning produces only 6.

Although concepts of dynamic zoning have been proposed

before (e.g., Matrix [14]), when the management of entities

is distributed, issues of state consistency, load balancing,

and fault tolerance emerge and need to be considered in

whole. We thus also describe our techniques to address these

issues, which existing proposals have yet described in a

comprehensive manner.

B. Multi-user Virtual Environments

Recently, MMOGs have become a popular form of enter-

tainment that rivals with movies. In a MMOG, users send

events (e.g., movements, trading, attacks) to a game state

manager, which, according to current game states and the

rules of the game (i.e., game logic), will update the game

states and return updates to the users, within their AOI. We

thus can consider sending events as point publications, made

by users and subscribed by the state managers, who have

well-defined subscribed areas. In the case of a partitioned

(i.e., zoned) world, each manager can subscribe to non-

overlapping regions. Sending updates from managers to

users can also be seen as point publications of game state

updates, receivable by users that have previously performed

area subscriptions in their AOIs. This abstraction is general

enough that if scalable SPS systems exist, MMOGs may

scale up accordingly.

C. Voronoi Overlays

Voronoi diagram [13] is a way to divide a space into n

regions based on the positions of n points, or sites, such

that all points within a region are closest to that region’s site

than to any other site. Intuitively, we can see each region in

a Voronoi partition as the sphere of influence of a given site,

or that each site is the closest manager of any point within

a region. By adjusting site positions, we can shift the edges

of a Voronoi diagram to change a region’s shape and size.

Existing works describe how Voronoi can provide decen-

tralized node management. For example, Liebeherr et al.

[15] describe how to build a Delaunay Triangulation (DT)

overlay (i.e., a dual structure of Voronoi) in a distributed

way to provide routing from any node to any other node

efficiently. However, it is a static overlay where the nodes are

relatively static in positions (e.g., only insertion and deletion

of nodes are considered). On the other hand, a Voronoi-based

Overlay Network (VON) [13] is designed to accommodate

nodes that move their positions constantly. Each node is

always aware of a number of AOI neighbors within a radius.

By using a Voronoi diagram to organize the AOI neighbors,

each node can identify the boundary neighbors (i.e., AOI

neighbors whose Voronoi regions overlap with the AOI

boundary, see Fig. 3 left), and enlist their help in notifying

any potential neighbors. New AOI neighbors thus can be

discovered without relying on a central server (see Fig. 3

right, where AOI neighbors are updated).

To spread message to all nodes within an AOI (i.e., an

AOI-cast), a unique spanning tree can be constructed on

top of a Voronoi overlay. VoroCast [16] constructs such a

spanning tree in a distributed fashion and covers all AOI

nodes only once (see Fig. 4). Genovali and Ricci [17] have

also shown that while only nodes inside the AOI need to

involve for circular AOIs, when the AOI is rectangular,

constructing the spanning tree may need to involve other

nodes outside the AOI.

Figure 3. Neighbor Discovery in VON. Big circle is the AOI boundary.
When the circle node moves to the triangle, stars are its boundary neighbors,
and squares are new neighbors. Crosses are old neighbors to disconnect.

Figure 4. Non-redundant spanning tree to forward messages in an AOI.

III. VORONOI SELF-ORGANIZATION

Voronoi Self-organizing Overlay, or VSO, follows the

basic idea of spatially partitioning a virtual space to support

SPS. The entire space is divided into various regions, each

managed by an interest matcher, or simply matcher. The

matcher is responsible to map a given publication with

potential subscribers. We define a client as a participant

(i.e., entity) of the system that may perform publications or

subscriptions. Additionally, clients can move their subscribed

areas, to receive more relevant and timely update messages.

For simplicity, we assume that these pub/sub areas are circles

or rectangles, and have a well-specified center point (e.g., a

circle is a center plus a radius; a rectangle is a center plus

a width and height). Each subscription thus is defined by

a subscription area, and each publication has the form of

(area,message), where area is the publication area, and

message is an application-specific message. Each matcher

is the unique authority within the region, such that a client

needs to register its subscription interests with at least one

matcher, before it can receive any publications. To ensure

that each subscription is only handled by a single matcher,

the matcher whose region covers the center point of a

subscription, is the proper owner of the subscription.

The system starts when clients contact their owner match-

ers and specify subscription requests. If the request is sent

to a non-owner matcher (i.e., the matcher’s region does

not cover the subscription point), the request is forwarded

greedily based on the subscription center to the actual owner

matcher. Note that greedy forward generally takes O(N1/d)
time on a Voronoi overlay (where N is the node size and d is

the dimension), though it can be improved to O(log(N)) by

adding shortcuts [18]. As such, bootstrapping can be done by

simply contacting any one of the existing matchers. The first

matcher of the system is called the gateway, and may be a

well-known host to facilitate client join. Once in the system,

clients can move subscription centers to new locations, thus

changing the subscribed areas. If the subscription center

crosses the boundary of a matcher into another matcher’s

region, then an explicit ownership transfer occurs where the

old and new owner exchange messages to ensure that the

transfer is atomic.

When a publication occurs, it is first sent from a client

to its owner matcher, which then checks a list of known

subscribers to send the message. If the publication area falls

outside the owner matcher’s region, the publication will

be forwarded to neighboring matchers continuously, until

all affected matchers are notified (via forwarding such as

VoroCast [16]). This way, each publication is guaranteed

to be delivered to all potential subscribers, as long as

subscription info is properly maintained by each matchers.

Although a subscription area may span several regions, each

subscription has only one owner, who is responsible to

forward any relevant publications to the client. A published

message thus would be delivered to a subscriber only once.

A. Dynamic Load Balancing

As subscriptions move and cluster, a given matcher

may become overloaded, it is thus desirable to adjust

matcher loads automatically. For this purpose, the matchers

form a Voronoi-based Overlay Network (VON) [13] to

maintain connectivity and perform load balancing. While

a VON provides neighbor discovery in a distributed way,

functionally it can be seen to provide only area subscriptions

and point publications. There is also no load balancing in

VON’s original design. By alleviating a VON to handle

only matcher connectivity (instead of clients), a client in

VSO maintains only a single connection with its matcher.

To provide load balancing, the matchers can adopt two

main strategies to alleviate overloading:

1) Adjust region size to match workload with capacity;

2) Insert a new matcher nearby to share the loads.

For the following discussion, we first make two assumptions:

1) a matcher can detect whether it is overloaded (e.g.,

simple CPU or memory usage monitoring); and 2) potential

matchers can identify themselves and report availabilities

to the gateway, which acts as the initial entry point of the

system for all candidate matchers. The gateway may send

a message to promote a matcher candidate at a certain

location in the virtual space. A potential matcher may be

a provisioned server (i.e., in a cloud system), or a client

machine (i.e., in a P2P system), however, this is mainly a

deployment decision and not architectural.

We note that in a Voronoi partitioning, it is fairly easy to

adjust region boundary, by moving the sites of the Voronoi

diagram (see Fig 5). The main questions then are: 1) how

to move the site locations, as client density changes; and 2)

where and when to insert new matchers, if overload persists.

We experimented with a number of approaches and came

out with the following simple rules, which we found were

effective. Intuitively, the ideal partitioning makes the size of

the region to match the region’s loading, which should reflect

the capacity of the matcher. In other words, the region size

would change in such a way that the average client density

Figure 5. Schematic of load balancing. (Left) The center matcher requests
help from its neighbors. Triangles are the subscriptions centers of clients.
(Right) Neighbor matchers move their sites closer to make the center region
smaller. Note that some subscription centers are now in neighbor regions,
the ownerships thus are transferred (e.g., the circles at the boundaries).

per square area roughly equals the handling ability of the

matcher per square area.

In our rules to adjust region sizes, a given matcher will:

1) shrink region size when overloaded by asking neighbors

to move their sites closer.

2) request a matcher insertion from the gateway, if 1) does

not work after a while.

The threshold to adjust would require tuning in practice,

we thus set the number of the “come closer” requests as

an adjustable VSO INSERTION TRIGGER, so that an

overloaded matcher’s neighbors will attempt to move their

sites closer for a specified number of times, before the

gateway is called to insert a new matcher. A neighbor

matcher uses the following formula to move closer:

Pnew = Pcurr + (Poverload − Pcurr) ∗ Fmove (1)

Where Pnew is the new position to be taken by the

neighbor; Pcurr is the current position of the neighbor;

Poverload is the overloaded matcher’s position and Fmove

is a number between 0 and 1 for the speed of adjustment.

While the above rules may appear intuitive, the site positions

would soon come close to one another during adjustments,

thus making the clients to cross region boundaries easily.

A second requirement thus is to have each region centers

(e.g., the sites of the Voronoi diagram) to be as far away

from each other as possible, while ensuring that each region

can approximately contain a cluster of clients, to minimize

region crossing. We thus devise a third rule as follows:

3) a matcher will move its site location closer to the

center of clients, using the following formula:

Pnew = Pcurr + (Lcenter − Pcurr) ∗ Fadjust (2)

Where Pnew is the new site position of the matcher,

Pcurr is the current site position of the matcher, Lcenter

is the load center of the client positions (defined as the

average coordinates of all x and y coordinates of their

subscription centers), and Fadjust is a parameter between 0

and 1 for how much should be adjusted each time. Note

that the matcher’s final site position will be a composite of

both formula’s effects.

Matchers can depart from the system, if its load is below

a given threshold, so that less overall resources are used to

support for the same workload. However, for simplicity, we

currently designate that only when the workload is zero (i.e.,

there is no subscription records on a particular matcher), will

the matcher leave the system.

An important note about dynamic load balancing is that

the change in site positions are coordinated via VON’s

Move Procedure [13], and are only loosely synchronized.

The change in site positions need not be coordinated atomi-

cally among relevant neighbors, because even if temporarily

inconsistency in the knowledge of site positions exists, it

will become eventually consistent when the load behavior

stabilizes (i.e., when load adjustment is not needed).

B. Cross-Boundary Interactions

With the division of the virtual space into regions, the

subscription of a client may fall into more than one matchers.

We thus need to ensure that subscriptions across region

boundaries can still work correctly. VSO uses two basic

designs for this purpose:

1) Single owner To ensure the consistency of the sub-

scription (i.e, the client’s understanding is the same as the

matcher’s), each subscription is maintained authoritatively

by one matcher only, and ownership of the subscription

is transferred via explicit messaging. As clients move (i.e,

change their subscribed area), the subscription information

must also move to a new matcher. Here an explicit ownership

transfer is used, so if a subscription’s center has moved into

the region of a neighboring matcher over a certain time

period (defined by an adjustable TIMEOUT TRANSFER),

an ownership transfer message is sent from the previous to

the new owner matcher. The new owner would send back an

acknowledgment for the transfer. If the ownership transfer

is unacknowledged for a certain period of time, the previous

owner may reclaim the ownership of the subscription.

2) Soft-state replications To ensure that subscribers can

still receive updates from matchers in other regions, a

subscription is replicated at all other non-owner matchers

if the subscription overlaps their regions, and is maintained

with a soft-state model (i.e., temporary inconsistency is

allowed to occur between the primary and replica, but will

eventually become consistent if the primary subscription is

not continuously changing). The matchers with the replica

subscriptions can thus check if any publications occurred

within their regions need to be delivered to a subscriber

at a nearby region. Such publications will be forwarded

to the owner matcher of the subscriber first, so that the

owner matcher can learn of such publications and notify the

subscriber only once for each publication. Note that such

notifications are necessary because a publication area may

overlap with a subscription area at a region different from

the one of the subscriber’s owner matcher (see Fig. 6).

Figure 6. A publication (circle) may overlap with a subscription (rectangle)
area at a different region (i.e., matcher B) than the subscription’s owner
matcher’s (i.e., matcher A)

C. Fault Tolerance

When regions are divided and managed by separate

matchers, one natural issue is how the publication / sub-

scription will still work in spite of matcher or client failure.

Client failure is simple to resolve, where the matcher that

currently handles the client can detect a connection loss and

remove the client’s subscription. For matcher failures, we

use two mechanisms to handle the failure:

1) Besides the owner matcher, each subscription is also

backed up at one or more neighboring matchers. If the

subscription area overlaps the regions of other matchers,

those matchers are notified of the subscription, plus any

future updates in the subscription (e.g., when the sub-

scription moves). Even if the subscription area does not

overlap with other regions, it is minimally backed up at

the closest neighboring matcher. This way, when a given

matcher fails, some of the subscriptions it previously owns

can be reclaimed by the remaining neighbor matchers.

2) The client, upon detecting the failure of its current

matcher, will re-initiate the join process and find the a new

matcher to re-register its subscription interest. This is similar

to a complete re-join, except that the spatial partitioning of

the regions will have changed.

The first mechanism allows a fast re-join for clients of a

failing matcher; the second mechanism ensures that recovery

will eventually occur, in case the first mechanism does not

work. Note that a matcher failure only has localized effects,

as only its closest neighbors (i.e., the enclosing matchers) are

affected and need to reclaim ownerships for the subscription

records from the failed matcher. Intuitively, matcher failures

are ultimately recoverable if the clients of a failed matcher

attempt to re-join the system. However, from a quality of

service perspective, it is still desirable if a matcher failure

is almost unnoticeable to the clients.

IV. VSO PROCEDURES

With the above rules, a Voronoi partitioning can be

in constant adjustment of its region shape and size, such

that the number of clients within a region will follow the

matcher’s capacity. Below, we describe the procedures of

VSO in more details, but first summarize the terminology

that will be used:

client a user node that performs publish/subscribe requests.

matcher a manager node of a Voronoi region that records

subscriptions and performs pub/sub matching.

enclosing matchers matchers whose Voronoi regions sur-

round a given matcher.

candidate matcher a node with sufficient capacity and

reachability to qualify as a new matcher.

owner matcher a matcher whose region covers the center

of a particular subscription.

acceptor matcher an existing matcher in the system that

accepts a joining matcher.

gateway the first matcher of the system, and the keeper of

a list of candidate matchers for matcher promotion.

replica subscription a subscription record replicated at

another non-owner matcher whose region overlaps with the

subscription area.

A. Initialization

1. The first matcher joins the system and acts as a well-

known gateway for the system.

B. Matcher Join Procedure

1. A joining matcher sends a join request to the gateway.

2. The gateway determines whether the joining matcher

is a candidate matcher and records it.

C. Matcher Leave Procedure

1. If there are no subscriptions managed by a matcher for

an extended time, the matcher leaves the system by itself.

2. Enclosing matchers of the leaving matcher adjust their

Voronoi regions using VON’s Leave Procedure [13].

3. The leaving matcher repeats the Matcher Join Proce-

dure to rejoin the pool of matcher candidates.

D. Subscribe (Client Join) Procedure

1. A joining client notifies an existing matcher of its

desired subscription area. The existing matcher may be

known from previous logins, or can simply be the gateway

if no known matchers exist.

2. The receiving matcher forwards the subscription request

greedily to find the owner matcher of the subscription.

3. The receiving matcher notifies the client of its owner

matcher.

4. The client requests subscription from its owner matcher,

which records it.

5. The owner matcher may forward the subscription

to its neighbors to record as replica subscriptions, if the

subscription area overlaps with neighboring regions (via

VoroCast [16]).

E. Publish Procedure

1. A client sends a publication to its owner matcher.

2. The receiving matcher checks if the publication

matches one of its subscription records, if so, the owner

matcher of the subscriber is notified. Note that the owner

can be the receiving matcher itself and thus no actual

transmission is made.

3. If the publication area overlaps with the regions of the

enclosing matcher, it is forwarded to the enclosing matchers

(using VoroCast [16] to avoid redundant forwarding).

4. Step 2 and 3 are repeated until no more matchers are

covered by the publication area.

5. The owner matcher of the subscription notifies the

subscribing client of the publication, while ensuring that

only one notification is sent.

F. Load Balancing Procedure

1. If a matcher is overloaded (based on the number of

subscribers, or the level of activities), it sends a MOVE

request to its enclosing matchers.

2. The enclosing matchers will move their sites closer to

the overloaded matcher (see formula (1) in Section III-A).

3. If the overload situation does not improve after re-

quests have been sent VSO INSERTION TRIGGER times,

a MATCHER INSERT request is sent to gateway.

4. The gateway selects a capable matcher from the can-

didate matcher list, and sends a PROMOTE request to the

selected candidate. The request consists of the candidate’s

joining position, which is the load center (i.e., the center of

all the subscription centers) of the overloaded matcher.

5. The selected candidate joins the matcher overlay via

VON’s Join Procedure [13] (i.e., asking gateway and be

greedily forwarded to the closest acceptor matcher near its

join location, where the acceptor matcher sends a list of

initial matcher neighbors to the joining matcher.)

6. The joined matcher notifies the gateway of its success-

ful join, to be removed from the matcher candidate list.

G. Ownership Transfer Procedure

1. Each matcher checks if the center of any recorded

subscription is now outside of its region, if so, it sends a

TRANSFER request to the respective matcher neighbor.

2. The neighboring matcher records the subscription and

sends back a TRANSFER ACK message to the previous

owner matcher to confirm the transfer.

3. The previous owner matcher notifies the respective

client of the change in ownership.

4. If the original owner matcher does not receive the

acknowledgement within a timeout period, the ownership

of the subscription is reclaimed.

0.0

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

6.0 M

7.0 M

 0 100 200 300 400 500

b
y
te

s
 /

 s
e

c
o

n
d

Number of Nodes

Max / Avg / Min Upload (Static Partitioning)
Max / Avg / Min Upload (Dynamic Partitioning)

(a) Matcher Upload

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

 0 100 200 300 400 500

b
y
te

s
 /

 s
e

c
o

n
d

Number of Nodes

Max / Avg / Min Download (Static Partitioning)
Max / Avg / Min Download (Dynamic Partitioning)

(b) Matcher Download

Figure 7. Static and Dynamic Partitioning Comparisons

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

C
o

n
s
is

te
n

c
y
 (

%
)

Time Steps

1 node / second
2 nodes / second
5 nodes / second

10 nodes / second

(a) Stable Size 50

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

C
o

n
s
is

te
n

c
y
 (

%
)

Time Steps

1 node / second
2 nodes / second
5 nodes / second

10 nodes / second

(b) Stable Size 100

Figure 8. Effect of Churn Rate on Discovery Consistency

V. SIMULATION EVALUATION

We now present some preliminary evaluations of VSO

based on simulations. For this initial evaluation, each client

only performs area subscription and point publication of its

position. We are mainly interested to answer these questions:

1) How does dynamic partitioning affect the work load

balance? 2) How consistent and accurate is the pub/sub

information, despite node churn? 3) How scalable can VSO

be to accommodate high user density scenarios?

We perform the evaluation by extending the VAST

library [13], which is an existing implementation of VON.

All simulations are conducted in discrete time-steps of 100

ms each. For simplicity and to evaluate fully the bandwidth

requirement, we assume no bandwidth limits and a constant

latency of 100 ms between nodes (i.e., a message sent

from node A to node B will be received and processed in

the next time-step). The basic setup of our simulation is

to mimic a Second Life region, with a 256 x 256 meters

dimension, a user AOI radius of 64 meters [19], and a

moving speed up to 10 meters / second. We multiply all

dimensions by 3 to allow better visualization, and perform

each simulation in the following steps:

1) A number of simulation nodes (i.e., clients) join

the system at a certain join rate (i.e., joining nodes/second).

2) Each node moves with a clustering pattern within a

768x768 area at a speed of 3 units / time-step.

3) We record the maximum / average / minimum per second

bandwidth usage at each node as they move.

The clustering movement is done by randomly placing

1.5 * ln(n) hotspots (n is node size, so 100 nodes has

6 hotspots) where nodes would move towards the nearest

hotspot with high probability. We allow each node to

register as a potential matcher with the gateway (i.e., a

P2P-like deployment), as pure client-specific bandwidth

usage is often small. The overload limit for each matcher is

set to 20 nodes (i.e., when subscriber size within a region

exceeds 20, the matcher would start the load balancing

procedure). To evaluate the correctness of the simulation,

we adopt discovery consistency (or consistency for short)

as the main metric. Discovery consistency is defined as

the percentage of the nodes actually visible to a user from

those that should be seen (e.g., if there are 10 nodes within

a user’s AOI, but only 9 are visible, discovery consistency

is 9/10 = 90%) [13]. For all the simulations below, except

the churn simulations, the average discovery consistency

is always above 99%, indicating that the performance

evaluation is based on the system first runs correctly.

Below we discuss our findings in the following three

categories: 1) comparison of partitioning method; 2) per-

formance under churn; and 3) scalability:

A. Dynamic Partitioning

We compare how dynamic partitioning affects matcher

workload by first dividing the whole space into 9 regions

and assigned them to 9 matchers. For static partitioning, the

division is fully regular as 9 square regions. For dynamic

partitioning, although the partitioning begins as square re-

gions, region boundaries may adjust with time. To perform

a comparable experiment, no new matchers are added to the

system.

Fig. 7(a) shows the average, maximum, and minimum

upload bandwidth of the matchers per second, as the total

number of nodes increase from 50 to 500. We can clearly see

that with dynamic partitioning, not only the average upload

bandwidth is lower, the difference between the maximum

and average upload is also greatly reduced. Workload thus

is much more balanced. For matcher’s download bandwidth,

Fig. 7(b) shows similar results, where dynamic load balanc-

ing greatly reduces the workload’s average and variance for

each matcher. As matchers need to send updates to clients,

their upload is greater than download in general.

B. Effect of Churn

To evaluate how VSO performs under constant node

joining and leaving (i.e., churn), we perform another set

of simulations with three periods: joining, churning, and

stabilizing. During joining, nodes enter the system at a

constant defined rate and start moving; in churning, nodes

would start to join and leave the system at a defined rate

per second; during stabilizing, no node joins the system to

allow stabilization.

We set up a stable size of 50 and 100 nodes, and a churn

rate of 1 node per second (i.e., there is one node joined and

one node leave each second) to 10 nodes per second. The

leaving nodes may be either a matcher or client, chosen

at random. Fig. 8(a) shows the discovery consistency of

the system as time goes, under 50 stable nodes. We can

see that for the joining phase, the consistency gradually

increases to over 99% until time-step 1000. As it takes time

to join the system, nodes that should be visible may yet

be learned, consistency thus may be low while nodes are

joining. Once nodes are fully joined, starting from step 1000

to step 2000, churn begins and we see a drop in consistency

to different degrees, the higher the churn rate the lower

the consistency. After 2000 steps, we see that consistency

restores eventually, mostly within 200 time-steps, or 20

seconds. The consistency drop can be as heavy as to 30%

for a 10 nodes / second churn rate (i.e., when 20% of the

nodes are constantly joining and leaving each second). Note

that there is no hard limit on what consistency level must be

in a given scenario, and it is rather application-dependent.

Although we generally expect a discovery consistency of

above 90% as being acceptable. In Fig. 8(b), a stable size

of 100 nodes is used, and we see that churn’s effects are less

severe, likely as the number of churning nodes is a smaller

percentage of the total nodes (i.e., 10% churn rate in the

most serious case). We again see that the consistency drops

when churn begins, and restores when there is no churn.

The most serious drop becomes about 20%. The line for 1

node / second churn rate increases continuously as it takes

some time for all nodes to fully join, but churning already

begins before nodes are fully joined, thus the continuous

increase. The important message from the two graphs is that:

1) consistency and churn rate have a negative correlation and

2) consistency restores back to normal eventually after some

time when the system re-stabilizes.

C. Scalability

For scalability evaluation, we are mainly interested in

the practical bandwidth requirement when a high density

of users exists. For this purpose, we simulate between 50 to

1000 nodes totally, all with a high joining rate of 10 nodes

/ second, and plot the cumulative distribution function or

CDF of bandwidth usage for both the matchers and clients.

Note that having 1000 nodes in our simulated area is a

severe density scenario (i.e., it is 10 times the density of the

current Second Life region). As matchers in general need

to send out updates on neighbors, their upload is greater

than download and is often the main scalability bottleneck.

Fig. 9(a) shows the CDF of the matcher’s average upload.

We see that with 500 nodes, 90% of the matchers has an

average upload of 500 KB / sec, while for 1000 nodes, 90%

of the matchers has an average upload of 1 M bytes / second.

This means that a majority of matchers on average sends

out less than 10 Mbps of data, which is within the range of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M

P
ro

b
a

b
ili

ty

Bandwidth Usage [bytes]

Matcher Upload(1000 nodes)
Matcher Upload (500 nodes)
Matcher Upload (200 nodes)
Matcher Upload (100 nodes)
Matcher Upload (50 nodes)

(a) Average Upload CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 1.0 M 2.0 M 3.0 M 4.0 M 5.0 M 6.0 M

P
ro

b
a

b
ili

ty

Bandwidth Usage [bytes]

Matcher Upload (1000 nodes)
Matcher Upload (500 nodes)
Matcher Upload (200 nodes)
Matcher Upload (100 nodes)
Matcher Upload (50 nodes)

(b) Maximum Upload CDF

Figure 9. Matcher Per Second Upload CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 10.0 k 20.0 k 30.0 k 40.0 k 50.0 k 60.0 k 70.0 k 80.0 k 90.0 k

P
ro

b
a

b
ili

ty

Bandwidth Usage [bytes]

Client Download CDF (1000 nodes)
Client Download CDF (500 nodes)
Client Download CDF (200 nodes)
Client Download CDF (100 nodes)
Client Download CDF (50 nodes)

(a) Average Download CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k

P
ro

b
a

b
ili

ty

Bandwidth Usage [bytes]

Client Download CDF (1000 nodes)
Client Download CDF (500 nodes)
Client Download CDF (200 nodes)
Client Download CDF (100 nodes)
Client Download CDF (50 nodes)

(b) Maximum Download CDF

Figure 10. Client Per Second Download CDF

home ADSL. However, to support actual systems, maximum

uploads should be considered and are shown in Fig. 9(b).

Here we see that the maximum upload is between two to

three times the average upload. For a 500 node region, 90%

of the matchers can be supported with an upload of 1.2 M

bytes / second, while all can be supported by an upload

of 2.2 M bytes / second (or 20 Mbps upload). For 1000

node region, 90% of matchers are supportable by 2.8 M

bytes / second upload, and 100% are supportable with 5.0 M

bytes / second upload. Our simulation results thus imply the

following: 1) the required bandwidth resources for matchers

is supportable with a combination of low and high bandwidth

hosts, where the majority (90%) can be of relatively low

upload capacity (i.e., ADSL-grade). For example, in the

case for 500 nodes, ADSL with 10 Mbps upload can cover

90% of the matchers’ upload needs; 2) In general, the

matcher size is only 10% of the total number of nodes in

the system (see Table I), so if ADSL-grade hosts can be

the matchers, it is possible to support a whole region of

relatively dense user population (e.g., 500 nodes) with client

machines, where only 10% of them need to assume matcher

responsibility. Given typical ADSL bandwidth distributions

and user incentives [20], such is a likely scenario.

Fig. 10(a) and Fig. 10(b) show the CDF of the average

and maximum download bandwidth for clients. we can see

that a majority of clients (90%) uses less than 120 KB /

sec of download (less than 1 Mbps), even for the 1000 node

scenario. Clients in general thus are supportable with today’s

ADSL environment, even for dense user populations.

Table I
MATCHER RATIO

Node Size Matcher Size Matcher Ratio

50 5 10.00%

100 8 8.00%

200 20 10.00%

500 41 8.20%

1000 74 7.40%

VI. CONCLUSIONS

We present the design and evaluation of Voronoi Self-

organizing Overlay (VSO), an adaptive mechanism to adjust

workloads within Voronoi regions to support spatial publish

subscribe (SPS) services. VSO utilizes two basic mecha-

nisms for load balancing: boundary shifting and new region

(i.e., matcher) insertion. Tolerance to matcher or client

failure is also supported by making backup subscriptions and

having client rejoin mechanisms during matcher failures.

We show from simulations that VSO reduces both the

average and variability of the workloads for matchers, so

that overload is less likely to occur, resource provisioning

can also be more dynamic. Fault tolerance to churn up to

10% in a 50 node region is supported, and the overlay can

recover from churn. Scalability analysis shows that even

under a very dense scenario of 1000 nodes per region, 90%

of the matchers only need an upload of 1 M bytes / sec

(i.e., 10 Mbps upload) on average. While 10 Mbps is enough

to support the maximum upload requirement for 500 nodes

per region for 90% of the matchers. In other words, home

ADSL connections plus a few server resources is sufficient

to support fairly high-density interactions.

While the initial evaluation is promising, we would still

like to evaluate VSO in more realistic environments and

under full SPS operations (e.g., area publications). The

dynamic partitioning and load balancing of VSO is general

enough to be deployed in both cloud or P2P environments.

How to best utilize both resources for scalability and per-

formance is thus an interesting question. Another important

aspect to investigate is whether under highly fluctuating

workloads, the number of active matchers can indeed adjust

accordingly to conserve resources.

REFERENCES

[1] S.-Y. Hu and K.-T. Chen, “Self-organizing spatial publish
subscribe,” in Proc. ICAC (poster), 2011.

[2] S. Singhal and M. Zyda, Networked Virtual Environments:
Design and Implementation. ACM Press, 1999.

[3] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera,
“Enabling massively multi-player online gaming applications
on a p2p architecture,” in Proc. ICIAD, December 2005.

[4] A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: A scal-
able publish-subscribe system for internet games,” in Proc.
NetGames, 2002, pp. 3–9.

[5] C. GauthierDickey, V. Lo, and D. Zappala, “Using n-trees
for scalable event ordering in peer-to-peer games,” in Proc.
NOSSDAV, June 2005, pp. 87–92.

[6] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer
support for massively multiplayer games,” in INFOCOM,
2004, pp. 96–107.

[7] S.-Y. Hu, “Spatial publish subscribe,” in Proc. IEEE Virtual
Reality (IEEE VR) workshop Massively Multiuser Virtual
Environment (MMVE’09), 2009.

[8] K. Morse, L. Bic, and M. Dillencourt, “Interest management
in large-scale virtual environments,” Presence, vol. 9, no. 1,
pp. 52–68, 2000.

[9] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state
management for peer-to-peer massively multiplayer online
games,” in Proc. IEEE CCNC Workshop NIME, 2008, pp.
1134–1138.

[10] K. L. Morse and J. S. Steinman, “Data distribution man-
agement in the hla: Multidimensional regions and physically
correct filtering,” in Proc. Spring Simulation Interoperability
Workshop, 1997.

[11] A. Bonotti, L. Ricci, and F. Baiardi, “A publish subscribe
support for networked multiplayer games,” in Proc. IMSA,
2007, pp. 236–241.

[12] E. Lety, T. Turletti, and F. Baccelli, “Score: A scalable
communication protocol for large-scale virtual environments,”
IEEE/ACM Trans. Networking, vol. 12, no. 2, pp. 247–260,
2004.

[13] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-
to-peer network for virtual environments,” IEEE Network,
vol. 20, no. 4, pp. 22–31, 2006.

[14] R. K. Balan, M. Ebling, P. Castro, and A. Misra, “Ma-
trix: Adaptive middleware for distributed multiplayer games,”
LNCS (Middleware 2005), vol. 3790, pp. 390–400, 2005.

[15] J. Liebeherr, M. Nahas, and W. Si, “Application-layer mul-
ticasting with delaunay triangulation overlays,” IEEE JSAC,
vol. 20, no. 8, pp. 1472–1488, 2002.

[16] J.-R. Jiang, Y.-L. Huang, and S.-Y. Hu, “Scalable aoi-cast
for peer-to-peer networked virtual environments,” in ICDCS
Workshops, 2008.

[17] L. Genovali and L. Ricci, “Aoi-cast strategies for p2p mas-
sively multiplayer online games,” in Proc. IEEE CCNC, 2009.

[18] M. Steiner and E. W. Biersack, “Shortcuts in a virtual world,”
in Proc. CoNext, 2006.

[19] H. Liang, M. Motani, and W. T. Ooi, “Textures in second life:
Measurement and analysis,” in Proc. P2P-NVE, 2008.

[20] A. Bharambe et al., “Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games,” in Proc. SIGCOMM, 2008.

