
Deployment Issues of Voronoi Self-organizing Overlays

Man-Chun Li
Department of Electrical Engineering

National Taiwan University
Taiwan

Email: pennytaipei@gmail.com

Shun-Yun Hu and Kuan-Ta Chen
Institute of Information Science

Academia Sinica
Taiwan

Email: syhu, swc@iis.sinica.edu.tw

Abstract—Spatial publish subscribe (SPS) is a basic primitive
underlying many real-time, interactive applications such as on-
line games or discrete-time simulations. Voronoi Self-organizing
Overlay (VSO) is a scalable SPS service designed to adjust
workload automatically to avoid system overload or underload.
We investigate the deployment of VSO on PlanetLab, to
evaluate whether it is feasible to scale up SPS operations in
real environments. Our results show that by ensuring enough
capacities for super-nodes (called matchers), such automatic
load balancing can scale up a Second Life region to over 200
entities while still maintaining proper discovery consistency.

I. INTRODUCTION

Spatial simulations allow coordinate-based entities to
move within a Cartesian space, based on certain rules and a
logical time. A common requirement in spatial simulations
is to know, or send messages to entities within a radius. For
example, Massively Multiplayer Online Games (MMOGs)
require players to know other players within an area of
interest (AOI), so that other players’ positions and actions
can be displayed. Such a requirement in general can be
described by a spatial publish subscribe (SPS) [1] service.
In SPS, each entity subscribes or publishes to an area, and
will only receive messages if its subscribed area overlaps
with the message’s publication area. How to scale up SPS
operations thus is important to scale up spatial simulations.
Partitioning the space into regions and assign manager nodes
for each region is a common technique. However, when
entity densities change unexpectedly, or if many entities are
simulated, manager could overload or underload, causing
quality of service to degrade or resource idling [2].

We have designed a scalable SPS service called Voronoi
Self-organizing Overlay (VSO) [1], where the spatial di-
vision is done via Voronoi diagrams, and can be adjusted
flexibly given the loading at each manager. VSO extends
a Voronoi-based Overlay Network (VON) [1] and follows
the basic idea of spatially partitioning a virtual space to
support SPS. The entire virtual space is divided into various
regions, each managed by a super-node called matcher. The
partitioning is based on Voronoi Diagrams, which partitions
n sites into n regions, where all points within a given
region is closest to the region’s site than to any other site.
The matchers are responsible to map a given publication

with potential subscribers. We define a client as an entity
of the system that performs publications or subscriptions.
Additionally, clients may also move subscribed areas to
receive more relevant and timely update messages. For
simplicity, we assume that publications or subscriptions
are circular areas. Each subscription thus is defined by a
subscription area, and each publication is in the form of
(area,message), where area is the publication area, and
message is an application-specific message.

Each matcher is the unique authority within the region,
such that each client registers its subscription interests with
at least one matcher, before it can receive publications. To
ensure that each subscription is managed by only a single
matcher, the matcher whose region covers the center point
of a publication or subscription is its proper owner matcher.

The system starts when clients contact one of the existing
matchers, and specify their subscriptions. The request can be
forwarded greedily based on the subscription center to the
actual owner matcher. The first matcher of the system is a
well-known host called the gateway. Once joined, clients can
move to new positions and change their subscribed areas.
If a subscription crosses the boundaries of matchers, then
the ownership of the subscription is explicitly transferred
between the old and new owner. When a publication occurs,
the client first sends a request to its owner matcher, which
checks for known subscribers to forward the message. If the
publication covers other regions beyond the current matcher,
the publication is forwarded to the neighbors continuously,
until all matchers whose regions overlap with the publication
are notified, so publications are guaranteed to deliver.

To adjust loading, an overloaded matcher can ask its
neighbors to move their sites closer, effectively shrinking
the size of its own region. Subsequent ownership transfer of
subscriptions may occur to reduce the requesting matcher’s
load. If the overload persists, the overloaded matcher will
request the gateway to promote one of the capable clients
(called candidate matcher) as a new nearby matcher.

II. PLANETLAB EXPERIMENT

Our goal is to evaluate VSO on real networks such as
PlanetLab [3], and to find out which deployment approach
is more practical. Our main metric is discovery consistency,



defined as the percentage of correctly discovered AOI neigh-
bors, out of all potential AOI neighbors [1]. For example, if
a node has 10 actual AOI neighbors but only sees 9, then the
consistency is 9/10 * 100% = 90%. We first collect logs on
the clients’ actual positions and their observed neighbors
(recorded with synchronized timestamps). After merging
into a global view of the clients’ authentic positions, we
can reconstruct which neighbors are visible to each client at
any time. Discovery consistency is then calculated between
the observed and the authentic client positions.

Figure 1. Concurrent Clients Reported

Figure 2. Discovery Consistency

At first, we randomly choose our Planetlab hosts, such that
the chosen hosts may be at different sites (i.e., a physical
location with several host machines). We start clients on each
host at random times within a period. However, we find that
the consistency is poor when the node size reaches 100. We
thus choose our PlanetLab hosts from the same site (i.e., a
LAN environment) to reduce latency and refine control on
joining. The hosts belong to UC Santa Barbara (CPU about
2.3GHz and RAM is around 3.67GB). On each selected host,
we uniformly place clients and allow at least one client be

promoted as a matcher. Clients join the system continuously
and move 5 steps per second for 3000 steps (i.e., about 600
seconds). Each client has a different movement path (based
on a nodeID), and wait for (1 * nodeID) seconds before
joining. The world dimension is 768x768 units, and each
move is 3 units in distance (i.e., 15 units per second), to
mimic dimensions of a regular Second Life region. We find
that too many clients at the same host would cause crashes.
So we set up no more than 50 clients on each host.

Figure 3. Effect of Matcher Sizes on Consistency

Fig. 1 and Fig. 2 track the changes in concurrent clients
and consistency (respectively) as a time-series in seconds
for 50 to 200 nodes (i.e., using 1 to 4 hosts). In general,
the consistency is above 90% , but may drop if there are
continuous join or departures (i.e., churn). The joining slope
is almost 1 node/sec, but the join may delay and consistency
could drop if there are matcher crashes (e.g., in the 200 node
curve in Fig. 1, we see that the delay in client join correlates
to matcher departures). However, the consistency tends to
restore if churn stops. This shows that churn negatively
impacts VSO’s correctness, even though VSO can function
properly if there are only node movements.

We also want to see how matcher size affects consistency.
We disperse 200 nodes uniformly on each host (i.e., 50
nodes/host) and increase the number of candidate matchers.
Fig. 3 shows the dependency of consistency on the number
of promotable matchers. As before, the consistency drops
due to node churn or matcher failure. Still, we see that
increasing matcher availability stabilizes consistency.

REFERENCES

[1] S.-Y. Hu and K.-T. Chen, “Vso: Self-organizing spatial publish
subscribe,” in Proc. SASO 2011, 2011.

[2] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial
to mmorpg?” in IEEE Cloud, 2010.

[3] A. Bavier et al., “Operating system support for planetary-scale
network services,” in Proc. NSDI, 2004.


