
Interaction Distribution Network

Shun-Yun Hu

Institute of Information Science
Academia Sinica, Taiwan, R.O.C.

Abstract. Content Distribution Network (CDN) has been effective in
accelerating the access and growth for web content such as web pages and
streaming audio and video. However, the relatively static and bulky data
CDNs are designed to serve makes them unsuitable to support latency-
sensitive interactive streams such as network games or real-time confer-
encing. In this position paper, we describe the concepts for an Interac-
tion Distribution Network (IDN), which supports small, interactive data
streams in a scalable manner.

An IDN shares certain concepts similar to a CDN in that end-user clients
connect to the closest serving proxies for accessing and updating interac-
tion data packets. However, the key differences lies in the bi-directional
nature of the interaction streams, and that the data streams may belong
to a certain “interaction group,” within which some additional processing
on the data are possible. An IDN may support existing instant messenger
(IM) services and Massively Multiplayer Online Games (MMOGs), while
enabling new usage scenarios. We discuss the key challenges, potential
solutions, and implications of IDNs in this paper.

1 Introduction

The Internet was designed to disseminate data packets to a large number of
audience, and the invention of World Wide Web (WWW) has provided very
effective means to distribute information. Subsequently, the serving of static
content was augmented by dynamic (e.g., dynamic web pages) and streaming
content (e.g., video and voice). As the size of Internet users increases, so have so-
lutions to serve content to them on a large scale. Content Distribution Networks
(CDNs) [12] have been designed to offload the requests from popular web-sites
so that both the number of concurrent users and the quality of user experience
can be improved.

However, in addition to the relatively static (and possibly bulky) content
data, another important type of data are interaction data, which are bi-directional,
and often come in short bursts of small packets, for the purpose to facilitate real-
time human-to-human interactions. Such data, except in certain special cases,
have yet found general solutions to support many millions of users. For example,
although technically feasible with dedicated resources, it is still uncommon for
thousands of people listen to a live online speech, while asking live questions
afterwards. Or, in emergency diaster reliefs, to gather groups of rescuers and



volunteers in groups up to hundreds or thousands, to brief them online for the
tasks ahead, or to discuss quickly what to do (currently this is only feasible by
a physical gathering within a big hall).

Even though Internet services such as instant messenger (IM) networks have
been deployed for many years, where a user can send real-time messages to
one or a group of contacts. Their usage scenario is limited to text or voice chat
messages with a few other users (e.g., most IM sessions are between two persons,
and a practical Skype discussion group is generally under 10 people). Interaction
groups with a large group size have yet appeared on the Internet.

In recent years, Massively Multiuser Online Games (MMOGs) [1] have spawned
out a new generation of Internet applications, where millions of concurrent users
are joining in the same virtual world, to interact with one another in real-time.
MMOGs provide a glimpse as to what future online interactions might look like,
as they provide settings similar to what we experience in the real world, with
spaces and gathering places. However, due to limited client-side bandwidth and
server-side resources, interactions among a single group of people generally are
limited to below 100 users. On the other hand, we are interested in interactions
that may allow thousands or more participants, to hold events similar to real-
world graduation speeches, holiday parades, rock concerts, and even political
rallies.

We observe that while disseminating content (e.g., web pages, audio and video
streams) is very matured, the dissemination of interaction (e.g., chat, online
editing, gaming actions), have yet found a general mechanism for large-scale
dissemination. In this paper, we term a mechanism that can serve this purpose
as an Interaction Distribution Network (IDN), and describe why an IDN may
allow new applications to develop, and help to scale existing interactions on the
Internet. We describe an initial proposal for how an IDN may be implemented,
and discuss some of its key issues and application scenarios.

2 Background

2.1 Content Distribution Network

CDNs [12] have been put in place soon after WWW took off. The main problem
CDNs try to address is the flash crowd effect of popular content. For example,
when a significant news event just happens, an online news site may suddenly
receive traffics several times over the normal. In such case, a single service point
would quickly be overwhelmed and ceased to provide services.

CDNs try to replicate the content onto several edge servers that could serve
similarly as the main site to potential visitors. A request sent to the main server
will be redirected to one of the best edge server so that the loading on the main
site is distributed. The best selection may be based on a number of different
criteria, such as latency experienced by the user, content availability, or the
current load of the edge server.



Note that because CDNs serve relatively static content, the key issues in
CDNs are content placement and request re-direction. Maintaining latency guar-
antee is not of primary concern (e.g., it is acceptable for a video stream to have
a couple of seconds of start-off delay, as long as the bandwidth is enough to
smoothly stream the video subsequently), nor is supporting potential processing
on the data stream (e.g., as needed by MMOGs to update game states).

2.2 Interest Management

To support scalable user interactions in MMOGs, a basic approach is to limit the
amount of data sent to each user. Ideally, only data most relevant to the user’s
current interaction should be delivered. The most basic interest management
thus is for a server to gather all data streams, then filter the data individually
for each user. For example, in a MMOG, the server may only deliver messages
on events occurring within the receiving user’s view, or the user’s area of interest
(AOI) [10].

To scale up such function, a common approach is to partition the virtual
environment spatially into regions, and assign each region a channel (i.e., either
a physical or application-layer multicast address). A user would subscribe to the
channels that represent or overlap with its AOI, in order to receive only the
relevant information. While such a basic technique would work, how to partition
and load balance the virtual space then becomes the main challenge. Due to the
often uneven user distribution across geographic or time of day [7], the proper
partitioning becomes the major challenge in keeping the approach scalable yet
economical.

2.3 Publish / Subscribe

To realize interest management, a common method is via the publish / subscribe
(pub/sub) model, of which there are two main types: channel-based and content-
based [2]. Channel-based pub/sub allows any user subscribed to a channel to
receive messages sent to the channel. For example, chatrooms can be realized by
having all users subscribed a given chat channel, and publish their respective chat
text to the channel. Content-based pub/sub on the other hand, would deliver
messages only if the message content matches certain pre-specified criteria (called
interest expressions) specified by the subscribers. For example, for messages that
have x and y coordinates, a user with a subscription request of [100 < x < 200]
and [250 < y < 450] would only receive messages with coordinates that fall
within the specified range.

A useful form of content-based pub/sub is spatial publish / subscribe (SPS)
[4]. In SPS, a user specifies only a subscription area (on a 2D space), other users
may then publish messages to either a point or an area. Only if the published
area overlaps with the subscribed area(s), will the subscriber receive the mes-
sage. Additionally, each subscriber can move its subscribed area continuously,



which helps to automatically receive the most spatially relevant messages, with-
out having to query continuously. For spatial interactions such as those within
MMOGs, SPS can be a more useful primitive than channel-based pub/sub.

3 Interaction Distribution Network

3.1 Basic Definition

We now describe what constitute as an IDN, and highlight its main character-
istics. In contrast to a CDN, an IDN should serve interaction data instead of
content data. By interaction data, we mean small packets that are generated
by human operators, which can come in short bursts, and need to be delivered
to intended targets in sub-second time-scale (e.g., the results of a user’s action
should reach other users in 250 milliseconds for an online action game). Another
requirement is that the number of interacting entities within a group should be
scalable, potentially in the range of thousands of more.

Existing real-time interactions on the Internet include IM networks, MMOGs,
and some forms of collaborative editing (e.g., Google Docs that allow sharable
online documents). When the supportable number of concurrent users are high,
the infrastructures used can be seen as specialized instances of IDNs (e.g., large
IM networks supporting tens of millions of concurrent users). However, an ideal
IDN should be able to serve a generic audience, regardless of application types,
much like how CDN can serve any web content (be it files or streaming media).
Another important aspect is that an IDN should keep the interaction latency
bounded within certain reasonable limits, while delivering only relevant data to
users.

In terms of functionality, IDN should support a general data path, which
can be best summarized as an “event → processing → update” path. We define
the messages generated by the human operators as event, which are delivered
(via the IDN) to some state managers for processing, according to application-
specific rules, the results are then delivered to users who may be interested or
are affected by the changes via update messages. For IM services, the processing
stage is missing (unless for backup or analysis purpose at the server), and the
messages only go through an “event → update” data path. However, MMOGs
are more general and do indeed need the processing stage for calculating new
game states based on rules of the game (i.e., the game logic). So existing data
path in MMOGs can serve as good examples of the full interaction data path
for an IDN.

We summarize some key requirements as follows:
Interactivity For any given interaction, there exists an interaction group

where bi-directional communications are possible and are of mutual interest to
the participants. The bi-directionality distinguishes interactions from the famil-
iar broadcasting (e.g., Internet radio or YouTube streaming). Because interac-
tions are between human participants, the delay between the generation of events
and the receival of updates should be within application-specified limits. This is



mostly application-specific, for example, the latency requirement for voice com-
munication should be less than 100ms, but for IM text it can be a couple of
seconds.

Scalability There are two types of scalability: scalability in terms of the
total number of concurrent users (which may be termed system scalability) and
another is scalability within the same interaction group (which may be called
group scalability). So while existing IM services can already scale to tens of
millions of concurrent users (i.e., achieving system scalability), the number of
participants is at most a few tens, and we do not yet see thousands of people
within the same interaction group. A similar situation exists for MMOGs, where
even though the size of the concurrent users in a game may be a few millions,
each interaction group is often less than 100 people.

Generality While existing architectures may already support some form of
IDN (e.g., IM networks and MMOGs), we consider that they are not yet generic
enough to support different application types on the same infrastructure. This
requires a generic design such that not only existing IM or MMOG services can
be deployed, new classes of applications can also be enabled (e.g., large-scale
interactive online lectures or rallies).

To compare with existing online interactions: an IDN is different from in-
stant messenger services in that in addition to the simple “sender → receiver”
data path, some optional processing can be placed on this path, enabling a
complete “event → process → update” cycle. On the other hand, while current
MMOGs already support such data path, they are not yet scalable enough so
that thousands of people can be inside the same interaction group. In other
words, although we already have scalable solutions for content distribution (via
CDNs), we do not yet have scalable solutions for interaction distribution, thus
the need for new designs.

3.2 Key Challenges

The requirements for an IDN can translate to certain challenges:
Bounded Delay (Interactivity) To support interactions, the key here is

that the interaction delay should be bounded, though not necessarily minimized.
In order to provide an upper bound for interaction delays, the time spent on
the data path from the sender to receiver of an interaction message should be
predictable and controllable, regardless of the current scale of the system or the
interaction group. As the data path consists of event → processing → update, all
three main stages should have predictable durations. While it is easy to control
such latency in small group interactions (e.g., we can assign one available server
to handle the message relay between two IM participants), it becomes more
problematic if the interaction group size is large, and if processing is involved on
the event messages. The main challenge then is whether the system can deliver
to a large interaction group, while keeping processing delay within certain limits.

Load Distribution (Scalability) In order for the interaction to scale, some
form of load distribution may be needed. This can be done in the form of having



proxy servers, where users can connect to the closest proxies to avoid over-
connecting a single server, or in the form of having multiple processing servers
(i.e., multiple state managers) so that the system is not brought down by over-
loaded processing. In general, both CPU and I/O operations on a IDN should
be distributed across the available IDN nodes as to maximize scalability.

Dynamic Grouping (Generality) For any given interaction, an interaction
group is formed among the participants, where members of the group can com-
municate with one another (pending some intermediate processing). In order to
allow for a generic architecture, the membership of the group should be able to
adjust dynamically based on application requirements. For example, new mem-
bers can join and old members can leave for an IM discussion group, or users
can walk in and out of an on-going battle field in an MMOG. While the rules of
the group formation may be application-specific, interactions within the group
should still adhere to the interactivity and scalability requirements mentioned
above.

3.3 A Potential IDN Design

Recent research on scalable MMOG systems have shown that by separating
different tasks traditionally located on a single server, group scalability may
improve. For example, Lake et al. [6] show that by separating the network I/O
function of a MMOG region server into a separate component (called a client
manager, which is responsible to handle all incoming and outgoing traffic with
user clients), they are able to scale the number of users in a Second Life region
(256m x 256m) from 100 to 1000. In works such as DarkStar [11] and Najaran
and Krasic [8], it is shown that if the function of message filtering (also called
interest management) is made into a separate component from normal processing
tasks, then message processing may become more scalable. In other words, by
separating interest management from state management, we can improve the
scalability of the system by: 1) lessening the load on state managers, and 2)
utilizing more state managers in parallel to improve overall scalability when the
processed tasks are independent from one another. We thus suggest the following
components in a generic IDN:

Proxies: These are servers which the user clients directly connect to, and
function much like web proxy or the edge servers in CDNs (e.g., the client man-
ager component as proposed by Lake et al. [6]). A connected client will have a
user instance created at the proxy to participate in the IDN on behalf of the
user. Users should connect to physically closest proxy to minimize latency. Con-
nections among proxies and between proxies and other servers are assumed to
be high-speed. This way, overall latencies on the data paths can be reduced.

Matchers: These are servers that perform interest management for the user
clients. So users (via their proxy instance) can specify interest subscription or re-
quests to the matchers, who will then perform the necessary filtering of unwanted
messages and deliver only messages with relevance back to the user proxies. The
matchers can simply support channel-based pub/sub functions (i.e., all users
subscribed to a given channel will receive messages sent to that channel, for



example, in Najaran and Krasic [8], a Scribe P2P overlay is used to perform
channel subscription on a per-user basis), or spatial publish / subscribe (SPS)
functions [4] (i.e., subscriptions and publications are specified as areas that can
move with users, which is more suitable for MMOG-style interactions).

Managers: These are servers that perform state management, which is also
the processing part in the “event→ processing → update” data path. The events
generated by users are used as inputs to further calculate and refine certain ob-
ject states, based on the input events and some pre-defined rules. The results of
the calculations (in the form of updated state variables) may then be communi-
cated back to the users via the matchers and proxies.

From another view, proxies are the system’s entry-points, and are repre-
sentatives acting on users’ behalf to participate in the IDN, for security and
latency-reduction purposes; matchers form a communication layer, where mes-
sages within the IDN are passed; while managers form a computing layer, where
tasks that require further computations (e.g., game state and logic calculations)
are done.

The basic “event → processing → update” data path may then be realized
in such a manner: a user-generated event is first sent to the user’s proxy, which
is then delivered to the respective matcher currently handling the interaction
group(s) of the user (e.g., a chatroom in case of IM service, or a small region in
case for a MMOG). If the event requires processing, for each interaction group,
there is a respective manager subscribed to the group, in order to receive any
events sent to the group. If the interaction group is large, it can be partitioned
and handled by multiple managers. A manager may also query relevant states
from other managers, in order to perform the correct processing (e.g., a manager
that handles a given region in an MMOG may want to know the status of other
users who reside in a neighboring region). Once the states are modified by the
manager, the manager would publish the update messages to the matchers, who
will deliver the updates to the respective subscribers (i.e., proxies on behalf of
their users). The proxies then deliver the updates back to the users, completing
the data path. In other words, the data path will look something like: user A →
proxy A → matcher A → manager → matcher B → proxy B → user B.

It should be noted that when the processing stage is involved, only man-
agers are allowed to subscribe for the user events, and user proxies can only
subscribe for update messages. So the matchers responsible for delivering events
(to managers) and updates (to users) are logically different, and can be hosted
on different physical machines. Note that even though the data path involves six
network hops, four of which are within the server cluster, which is assumed to
be connected via high-speed networks. As the two external hops (i.e., between
users and proxies) are also assumed to have low latencies (users should connect
to their closest proxies), overall latency can be controllable.

3.4 IDN Variations

The above outlines the basic designs for an IDN, however, variations exist that
can either improve performance or make IDN more customized to specific appli-



cations. For example, existing IM networks can be supported with only proxies
and matchers, as chat messages generally do not require further processing (un-
less real-time analysis is required). A scalable channel-based pub/sub mechanism
is sufficient for running the matchers. To support group communication, a chat
channel is set up for all participants to join, each message sent to the channel
is then delivered to all active participants (i.e., subscribers) of that channel. In
another variation, the roles of proxies and matchers may be combined or run on
the same physical machines. This will have the interesting effect that events in
an MMOG that require processing can be separately handled from those that
do not. For example, when the proxies have received a trade or attack event
message (which may need to be processed based on current game states and
game logic), the message should be forwarded to the manager. However, if the
message is simply a movement or a chat, the matchers can deliver the messages
directly to relevant proxies, without going through the managers, thus saving
both processing and delivery time. If the proxies and matchers reside on the
same machines, delivery can be quite efficient (e.g., user A → proxy A → proxy
B → user B), given the assumed low latencies among proxies, and between users
and their proxies.

4 Discussions

One important question is how interaction groups up to thousands of participants
can be supported, while keeping delay bounded. The answer depends on both
mechanism and hardware performance. For mechanism, the simplest delivery is
based on channel-based pub/sub, where a given channel is hosted on a certain
matcher, and all potential users interested in group interactions send subscription
requests to the matcher. Whenever a message is sent to the matcher, the matcher
will forward it to the subscribers. This mechanism faces a limitation when the
subscriber size is large and beyond a single matcher’s upload capacity. A simple
extension is to allow the matchers to first forward the messages to some helper
matchers, which can then forward the message to subscribers on their own.
Certain application-layer multicasts such as Scribe (as used by Najaran and
Krasic [8]) or VoroCast [5] can be used for this purpose. While there is latency
penalty for the forwarding among the matchers, the cost should be small as it
occurs within a LAN. As each additional helper matcher contributes its own
processing capability, overall delivery time can be improved for many recipients.
Whether the overall latency can be bounded is determined by the depth and
speed of the forwarding among matchers. Actual hardware limit and latency
thus will determine the maximum size of an interaction group.

Another important question is how to ensure that the processing time at the
managers is also bounded. We note that for state management, the most generic
form is that some existing object states are updated based on some new events
and pre-existing rules. For example, the processing of a trade event from user A
to user B in an MMOG would check the following: 1) whether user A has the
trading item (e.g., money); 2) whether user B has the traded item (e.g., some



clothes); and 3) whether user A has enough space to carry the new item, etc.
Such a transaction requires the knowledge of the game states of both user A
and user B, as well as certain rules regulating the transaction (e.g., user A must
have enough money and space for the trade to be successful). Afterwards, if the
trade is successfully concluded, both user A and user B should be notified of the
new states. We note that in such case, each transaction is quite localized and
requires only a few states. It is thus possible to conduct many such interactions in
parallel, independent from each other. If there are conflicting updates to a certain
state, existing consistency techniques such as locking or synchronization model
(e.g., primary-replica objects) can be employed. The key to scalable processing
thus lies in ensuring that each individual state managers can have access to the
relevant states and events in time [11].

Assuming that the update rules are already stored at the managers, the
relevant question then is whether existing object states can be accessed within a
given time constrain. This involves certain query operations of either key-value
queries (e.g., access the object states for user ’John’), or spatial queries (e.g.,
find all objects within a 3 meters range that this rocket might collide). We note
that key-value lookup can be done in O(log n) time, where n is the number of
searchable objects (e.g., using CAN [9]). While spatial query can be done within
constant time (by using geographically partitioned overlay such as a VON [3] or
on extensions of CAN). As long as the query time can be independent from the
total number of objects searchable, or at least those key-value queries (which
takes O(log n) time) are few for a given event, the processing operations can
spread out on different processors, independent of where the event takes place
(e.g., as used by Project DarkStar [11]). State processing thus may become
parallelizable on a massive scale.

In summary, the keys to support scalable interactions within the same group
are: whether the message delivery and event processing time within the IDN
can be bounded. For the former, we consider that using multiple matchers for
forwarding will distribute messages to a larger set of subscribers, while incurring
small latency overhead within the IDN’s high-speed LAN environment. For the
latter, we consider that as long as the query time for accessing existing object
states can be constant, and that event processing generally involves only a few
objects, it is possible to process a large number of events in parallel such that
the processing is distributed on multiple machines and finished within a bounded
time.

5 Application Scenarios

While webcast already enables up to hundreds to thousands of people to watch
a live or recorded event on video over the Internet (delivered via CDNs), we do
not yet see scenarios where the audiences can ask live questions afterwards and
still be heard by all other participants. This can be seen as an extended form of
a large chatroom, except that the number of participants may be too large for
a single server to deliver all out-bound messages.



With an IDN, the speaker’s voice or video will go through the speaker’s
proxy first, then it will reach the one of the matchers responsible for the speech
publication. The first matcher could then forward the data stream to a number of
helper matchers, which then could forward the speech stream to the subscribing
users’ proxies. The depth of the internal forwarding can be adjusted according to
the number of total participants (e.g., the more participants, the higher the depth
and width of the forwarding). The data stream finally will reach the participants
via their respective proxies.

If any participant wishes to ask a question afterward, his or her data stream
will go through exactly the same procedure as the speaker’s (i.e., asker → asker’s
proxy → asker’s matcher → helper matchers → audiences’ proxies → other
audiences). The only problem that will prevent the system to scale is if too many
users are all speaking simultaneously. However, given that only one participant
will be asking questions at a time in this scenario (provided that a moderator
exists), the situation should be scalable to thousands of users.

6 Conclusion

This paper presents the concept for an Interaction Distribution Network (IDN).
Although aspects of IDN already exist in today’s instant messenger networks
and MMOG systems, current systems can still improve in their group scalability
and generality. We show that by integrating the separate components into a co-
herent design, scalability under bounded delay may become possible. The main
difference between an IDN and existing systems is the separation of interest man-
agement from state management, so that message delivery and processing time
may be bounded. We identify three components at the server side as proxies,
matchers, and managers. Not only existing systems can be supported by us-
ing a combination of these components, new classes of applications can become
feasible from the improved scalability and generality. While we have identified
the basic IDN layout and how we can approach to build one, works remain on
actually constructing one. This will provide a step towards supporting truly dy-
namic interactions on a massive scale on the Internet, and possibly new types of
applications.

References

1. Alexander, T.: Massively Multiplayer Game Development. Charles River Media
(2003)

2. Bharambe, A.R., Rao, S., Seshan, S.: Mercury: A scalable publish-subscribe system
for internet games. In: Proc. NetGames. pp. 3–9 (2002)

3. Hu, S.Y., Chen, J.F., Chen, T.H.: Von: A scalable peer-to-peer network for virtual
environments. IEEE Network 20(4), 22–31 (2006)

4. Hu, S.Y., et al.: A spatial publish subscribe overlay for massively multiuser virtual
environments. In: Proc. 2010 International Conference on Electronics and Infor-
mation Engineering (ICEIE 2010). pp. V2–314 – V2–318 (2010)



5. Jiang, J.R., Huang, Y.L., Hu, S.Y.: Scalable aoi-cast for peer-to-peer networked
virtual environments. In: Proc. ICDCS Workshop Cooperative Distributed Systems
(CDS). pp. pp.447–452 (2008)

6. Lake, D., Bowman, M., Liu, H.: Distributed scene graph to enable thousands of
interacting users in a virtual environment. In: Proc. NetGames 2010 (MMVE ses-
sion) (2010)

7. Lee, Y.T., Chen, K.T.: Is server consolidation beneficial to mmorpg? In: Proc.
IEEE Cloud (2010)

8. Najaran, M.T., Krasic, C.: Scaling online games with adaptive interest manage-
ment in the cloud. In: Proc. NetGames 2010 (2010)

9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. SIGCOMM (2001)

10. Singhal, S., Zyda, M.: Networked Virtual Environments. ACM Press (1999)
11. Waldo, J.: Scaling in games & virtual worlds. ACM Queue (Nov/Dec 2008)
12. Wang, L., Park, K., Pang, R., Pai, V., Peterson, L.: Reliability and security in the

codeen content distribution network. In: Proceedings USENIX Annual Technical
Conference (ATEC ’04) (2004)


