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Abstract—State management is a basic requirement for multi-
user virtual environments (VEs) such as Massively Multiplayer
Online Games (MMOGs). Current MMOGs rely on centralized
server-clusters that possess inherent scalability bottlenecks and
are expensive to adopt and deploy. In this paper, we propose
Voronoi State Management (VSM) to maintain object states for
peer-to-peer-based virtual worlds. By dynamically partitioning
the VE with Voronoi diagrams and aggregating game states
of overloaded nodes onto superpeers, VSM supports existing
consistency control to enable scalable, load balanced, and fault
tolerant VE state management. As both client and server-side
resources are utilized collaboratively, VSM also integrates both
client-server and peer-to-peer VE designs in a unified approach.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs), where up
to hundreds of thousands of players assume virtual identities
known as avatars to interact in synthetic virtual environments
(VEs) [1], have in recent years seen phenomenal commercial
success and cultural impacts. Today’s MMOGs scale by using
a number of dedicated servers linked on high-speed networks
to form a server-cluster. However, server-clusters cost millions
of dollars to develop, deploy, and maintain [2], and the total
amount of resources is still limited at any given moment. Some
recent proposals thus suggest the use of peer-to-peer (P2P)
architectures to support MMOGs that may be more scalable
and affordable [3]–[14].

One fundamental requirement for MMOGs is the main-
tenance of game states, which are the various attributes of
game objects such as the locations, possessions, and current
status of avatars and computer-controlled non-player charac-
ters (NPCs). In a client-server architecture, game states are
stored authoritatively at the servers, and are updated according
to game-specific rules called game logic. For a P2P-based
MMOG (P2P MMOG), the design goal thus is to distribute
game states from centralized servers to participating clients,
while ensuring consistent views and balanced workloads for
all nodes. However, although proposals have been made to
maintain a P2P network’s topology based on avatar positions
[3]–[9], few have yet addressed game states management
comprehensively [10]–[14]. Furthermore, P2P schemes pose
other practical challenges, namely: heterogeneity, where not all
clients have the same resources to support similar behaviors;
churn, where clients constantly join and leave the network;
and hacking, where a client’s behavior is modified to cheat or
disrupt gameplay.

We propose a P2P-based game state management scheme
called Voronoi State Management (VSM) that considers both
client heterogeneity and churn. VSM partitions the VE into
a number of cells via Voronoi diagrams [15], each of which
is managed by a client using existing consistency controls.
Capable clients are promoted as aggregators to manage mul-
tiple cells for overloaded nodes. To balance aggregators’ loads,
VSM dynamically adjusts their control spheres and inserts
new ones as needed. Sufficient fault tolerance is achieved by
replicating game states onto backup nodes.

The contributions of this paper are the analysis of cur-
rent MMOG state management and the design of VSM. We
show that VSM can be practical to meet the consistency,
responsiveness, scalability, and reliability requirements for
MMOGs [4], and can be easily integrated with server-clusters,
thus providing a bridging transition from client-server to P2P
MMOGs. The rest of this paper is organized as follows. Sec-
tion II provides background on MMOGs and server-based state
management. Section III presents our problem formulation.
We describe VSM’s design in Section IV, and related work in
Section V. Conclusions are presented in Section VI.

II. BACKGROUND

A. Networking and Consistency Models

Games can be seen as finite state machines where user
inputs or game semantics (such as NPC behavior) cause
events to be generated and game states subsequently modified
according to game logic. For example, a rule may state that: “A
player gains 30 experience and 1 agility points if the avatar has
run for 3 minutes”. State updates therefore can be understood
as a request - process - update - display sequence.

Networked games additionally can be understood from their
networking model (i.e. how nodes connect and communi-
cate) and consistency model (i.e. how game state updates
are maintained across nodes). For networking, the two main
architectures are point-to-point (also known as peer-to-peer,
for clarity, we will refer it as point-to-point) and client-server
(including both single servers and server-clusters). In point-
to-point, all nodes are fully connected to each other and any
message generated is sent to all other nodes. Point-to-point
does not scale well as transmissions grow at O(n2), where
n is the node size. In client-server, event messages from all
client nodes are sent to a special server node, which then
redistributes the messages according to the clients’ individual
needs, achieving O(n) overall transmissions [1].



Two main consistency models also exist in today’s net-
worked games based on where game logic is executed: event-
based and update-based. Event-based requires all nodes to
have the full game states and perform the same game logic
[16]. Any event occurred is received and processed by all
nodes. As long as each node has the same states and processes
events in roughly the same order (depending on consistency
requirements), game states would update consistently on all
nodes. As consistency depends on event ordering, synchroniza-
tion both conservative (e.g. lock-step) and optimistic (e.g. Time
Wrap [17], TSS [18], and OOS [19]) have been proposed. On
the other hand, in update-based model, a server node retains
all the game states and is the only node that executes game
logic. Clients send events only to the server, and receive state
updates relevant to their interests [20]. Consistency is achieved
as long as client-side replicas of the game objects are roughly
in sync with the server’s primaries by having relevant and
timely updates. Here, both the server and clients maintain
game states, with the difference that the server’s version may
be global (i.e. it has all the states) and authoritative, while
the clients’ states are local (i.e. it has only what is relevant
to current gameplay) and referential (i.e. game states could be
corrected if deviated from the server’s version [20]).

Event-based models often coincide with point-to-point net-
working, whereas update-based models are often used with
client-server. Event-based is suitable for games such as real-
time strategy (RTS), where the full set of game states is needed
by each node, yet too large to update [16]. But as events from
all other nodes must first be received before time can advance,
time advancement could slow down when extra latency exists.
Update-based is suitable if clients only need a subset of the
game states, or if game logic is preferred to be centrally
executed. As the server has authoritative view for a given
area, logical clock can also advance at regular intervals (e.g.
100ms for each clock tick) regardless of the actual latency
among nodes, providing faster responses. Current MMOGs
thus adopt client-server with update-based consistency control,
as clients only need partial game states, security is more easily
guaranteed, and the server need not wait to advance its time.

B. MMOG Server-cluster Designs

One common way the game industry adopts to scale
MMOGs is to provide players parallel access to duplicated
worlds (called shards), where each world is essentially a sep-
arate environment with a limit on concurrent users (e.g. 2000
to 2500 [2]). Players then choose which shard to enter upon
login. However, this approach lessens realism and limits social
interactions as communications are blocked across shards [21].

To scale a single virtual world, three main designs for
server-cluster exist based on how game states are distributed:
1) replication-based, where the servers form a point-to-point
topology and possess identical, fully replicated game states
(e.g. proxy-servers [22] and mirror-servers [18]); 2) object-
based [23]–[25], where game objects are distributed evenly
among servers; and 3) zone-based [21], [26]–[32], where game
objects are partitioned spatially.

Replication schemes allow events from any player to be
processed by any server, so that players can connect to the
server with minimal latency. They also allow more flexible
load balancing, as overloaded servers can migrate players to
any server in the cluster. However, its point-to-point com-
munication can be unscalable. Object-based approaches often
attempt to split objects as evenly as possible on the servers (the
most common are player objects). This allows load balancing
to be simply finding ways to distribute objects evenly. How-
ever, as events may affect an unpredictable number of objects
on other servers, the amount of inter-server communication
can become unpredictable. A zoned approach, on the other
hand, keeps most of the event processing local unless the
events occur near zone borders, inter-server communication
thus can be constant for a given player density, achieving better
scalability. However, cross-border interactions may involve
locks for zones or objects that could be time-consuming [27].

Given the better scalability of zone-based approaches, today
they are more widely adopted in practice. However, three inter-
related issues must be addressed: 1) how to partition the world,
2) how to balance work load among servers, as users may
crowd and overload a particular zone, and 3) how to maintain
consistent visibility and interactions across zone borders.

Existing partitioning schemes may be static such as grids
[21], [27]–[29], or dynamic such as strips [30], quad-tree [26],
or other irregular shapes [31], [32]. To balance load, load
detections are first done by periodically monitoring CPU or
bandwidth usage [28]. Once abnormality is found, evaluation
is performed to determine if zones should be repartitioned, or
if objects need to be migrated to other servers. Global schemes
recalculate load assignments based on the loads from all
servers [23]–[26], whereas local schemes consider boundary
shifting or load migrations only with neighbors [28]–[32].
Local schemes are more efficient in terms of computation
and migration costs, but migration could not occur when
neighboring servers are also overloaded. On the other hand,
global schemes can better utilize resources as loads can be
migrated to any server. However, global information collection
and optimization are time-consuming and may not be practical
under MMOGs’ real-time constrains. Additionally, if a server
handles discontinuous zones as a result of load migration,
inter-server communication could increase [28]. Neither ap-
proach thus addresses load balancing satisfactorily.

To provide visibility across zone borders, replicas may be
created for near-border objects. To ensure update atomicity,
border objects may be locked for events that update more than
one object across borders [27] (e.g. when a player hands an
item to another player, see also “Seamless Servers: The Case
For and Against” in [33]). Consistent and transactional updates
thus are possible at the cost of increased delays.

In general, server-cluster load balancing faces the tradeoff
between balancing computation load and minimizing inter-
server communications [24], [28]. Besides load balancing,
consistency maintenance during load migration is another
issue that needs to be considered [27], [34], while little
published work has been done on fault tolerance [11].



Fig. 1. (L) Voronoi partitioning (triangles are objects, squares are user nodes
as sites) (R) Star node needs to connect to its AOI neighbors (squares)

Fig. 2. (L) Shades are the aggregator’s sphere of control (R) Virtual peers

III. PROBLEM FORMULATION

We first present a general problem formulation and assump-
tions for state management in VE applications as follows:

1. The world is a 2D plane with fixed width and height.
2. Attributes are tuples of the form (type, name, value),

where a type is a basic data-type such as int, char, float,
or string. They are the basic encapsulations of game states.

3. Objects consist of tuples of the form (name, attributes,
x, y), where x and y are the x and y coordinates of the
object’s location within the VE, and attributes is a list of
attributes associated with the object. Objects are the basic
units representing players, NPCs, or items and may change
locations via player inputs or game logic executions.

4. Objects are created, updated, and destroyed by events,
which are messages initiated by players or NPC algorithms,
and are processed according to game-specific game logic.

5. Each player controls an avatar object, which has a fixed
and game-specific area of interest (AOI) radius [1], within
which interactions occur (i.e. an avatar is only aware of object
updates in its AOI; likewise, events can only impact objects
within the AOI of the initiating avatar).

IV. VORONOI STATE MANAGEMENT

As existing server-based schemes may not effectively sup-
port system scalability and load balancing, while P2P schemes
have yet to manage game states sufficiently, we thus seek to
address both issues with Voronoi State Management (VSM).

A. Design of VSM

Our aim is to allow object states be managed collaboratively
by both servers and clients in a scalable and seamless manner.
We also would like to utilize existing client-server-based
consistency control to make state management transparent for
application developers, so that applications can be developed
in manners similar to existing client-server-based VEs.

We note that the central issue is to effectively partition and
distribute game states among participating nodes, such that
resource usage at all nodes is bounded. A simple way thus is
to distribute game objects among all user nodes, where each
object is managed by the nearest user (i.e. the node whose
position is closest to the object on the virtual map). Note
that the VE will then partition into a number of Voronoi cells
[15] with user positions as the sites of each cell (Fig. 1L).
Within a cell, the user node can govern all object updates in
a client-server fashion. As some events may affect objects in
nearby cells, each node also needs to connect with neighboring
nodes in charge of the other objects (i.e. the AOI neighbors
whose Voronoi cells are covered by a given AOI, see Fig.
1R). Voronoi-based Overlay Network (VON) [4] can be used to
keep connections with AOI neighbors. However, this approach
has three potential problems: 1) When users are crowded
inside a small area, each node’s connection would grow at
O(n2), where n is the number of AOI neighbors. 2) Due to
the unequal distribution of user locations, certain cells may be
quite large with large number of objects beyond what a user
node can handle. 3) The users are always moving, making
object ownerships difficult to determine precisely.

To address the above issues, we first identify two roles for
each user node: arbitrator and peer. An arbitrator is in charge
of a given Voronoi cell, and has the authority to decide how
game states should change according to event messages and
game logic. A peer is a node that generates events and displays
the results of processed events. Arbitrators are like the server,
and the peers are clients. User nodes thus always have the peer
roles, which take user commands and generate relevant events
for arbitrators to process. Arbitrators, however, can be fulfilled
only by capable user nodes, or by the server if needed.

All user nodes start as both peers and arbitrators where
each peer submits events to its arbitrator part for processing.
However, when user nodes crowd and become overloaded due
to increased connections and messages, a more capable user
(or server) node is selected as the only arbitrator responsible
for a group of peers. This elevated superpeer, or aggregator,
then acts as a special arbitrator with a fixed location and a
circular sphere of control, of which any regular peer must
submit its arbitrator role upon entering (Fig. 2L). In case a
peer approaches multiple aggregators, it would join the closest
one. This way, peers in the sphere of control connect only to
the aggregator, reducing overall bandwidth usage. Meanwhile,
other independent peers outside the sphere can still keep con-
tacts with their AOI neighbors via the aggregators. To prevent
an arbitrator from managing excessive area, server-provisioned
virtual peers are deployed initially at specific locations as
arbitrators (Fig. 2R). Control is released to user nodes only
incrementally as they join. To avoid ambiguities in object
ownerships caused by node movements, explicit ownership
transfer via messages is required between arbitrators.

There is still a gateway server that acts as the initial object
maintainer and the entry point for all user nodes. However, the
gateway is light-weight and is required by clients only during
the initial join or when finding suitable aggregators.



We describe VSM’s mechanisms in more details below:
Consistency control We choose to use update-based con-
sistency for VSM, as consistency can be achieved without
requiring the arbitrators to wait to progress logical time. We
also observe that few events in typical MMOGs are actually
correlated [19] (e.g. a trade can occur amidst a fight, and most
interactions occur between just two players), consistency thus
is achievable if only one set of authoritative game states exists.

In VSM, each arbitrator is authoritative as the managing
arbitrator within its cell. Events generated in the cell (e.g.
player/NPC actions) are first sent to the managing arbitrator,
then processed directly or forwarded to relevant arbitrators
if some affected objects are outside the cell. An arbitrator
thus is in contact with neighboring arbitrators whose objects
are observable by its peers. Each arbitrator keeps internal
time buckets [35] to store incoming events and processes
them at regular intervals according to game logic. When
object states have changed, other interested arbitrators whose
peers can see the object will receive state updates from the
managing arbitrator. Events and updates can be either reliable
or unreliable based on their importance (e.g. movements can
be unreliable, but chat or trade messages are reliable). We note
that games commonly utilize client-side predications [20], [35]
to mask latency for fast actions (e.g. movements), so even if
we send the more critical events (e.g. chat, trade, player death)
reliably with longer delays, it may still be acceptable.

Game objects’s ownerships in principle belong to the man-
aging arbitrator. However, as Voronoi cell boundaries can
change due to user node movements, to ensure that state
updates occur authoritatively at only one node, explicit mes-
saging between arbitrators is required for ownership transfers.
In most cases the transfers are light-weight, as game states are
usually already known by the neighboring arbitrator (if their
peers can see the objects). Whole object states are transferred
along with ownership only if the new owner does not know
the object. When an arbitrator mistakenly receives an event for
objects it does not own (e.g. ownership transfer is in process),
the arbitrator would forward the event to the proper owner.
Two main types of actions in MMOGs are handled as follows:

1) Basic update: When a user walks, equips some items, or
attacks other users/NPCs, the event affects one or more objects
directly. In such case the event is sent to and processed by the
managing arbitrator of the affected objects (via forwarding if
necessary). Updates are then sent to any interested arbitrators.

2) Transactional update: When a trade occurs between two
users (e.g. A buys an item from B), the event will affect
states for two or more objects simultaneously. In this case, A’s
arbitrator first requests to lock the affected attributes from B’s
arbitrator, before updating A’s states (i.e. item added, money
decreased). B’s arbitrator is then notified to update B’s states
while releasing the lock (i.e. item removed, money increased).
The transaction finishes when A’s arbitrator receives a confir-
mation from B’s arbitrator. During the lock, any events that
might change A or B’s affected attributes are queued for later
processing. Unless the final confirmation is received, both
arbitrators will restore the original states after a timeout.

Load balancing The goal for load balancing is to ensure
that the loads of all nodes in the system do not exceed each
node’s capacity. Unlike existing schemes, where the load is
first distributed to a fixed number of high-capacity server
nodes, then migrated between them when overload occurs,
we propose a somewhat opposite approach where the load
is first assigned onto many low-capacity user nodes, and
then aggregated to high-capacity nodes or server nodes when
overload happens.

We assume that there are existing methods to detect a node’s
current load, and that thresholds for a node’s overload and
underload conditions are well-defined. In VSM, initially each
user node is also the arbitrator of the Voronoi cell based on
its own position. Overload occurs when there are too many
AOI neighbors to connect and exchange messages, and the
arbitrator would ask the gateway server for an aggregator (i.e.
a superpeer with spare capacity, or a server node if no such
peer exists). The aggregator then takes over the arbitrator role
of the overloaded node, with a fixed location at the requestor’s
current position. The aggregator has a predefined radius ac-
cording to its capability, within which all user nodes should
submit their arbitrator roles. The aggregator then manages all
the Voronoi cells of the peers within its sphere of control.
It is important to note that the takeover does not change the
partitioning of the cells, so the area controlled by an aggregator
is often irregular but roughly conforms to a circle.

However, the aggregator itself also has a resource limit
and may be overloaded if it manages too many nodes. When
an aggregator overloads, it shrinks the radius of its sphere
of control until the load becomes manageable. However, if
there are still other overloaded user nodes outside the sphere,
they would ask the gateway to initiate new aggregators. When
the aggregator is underloaded (i.e. the peers it manages has
decreased), it would disintegrate itself to return control for
the Voronoi cells back to the user nodes.
Fault tolerance As VSM relies on user-supplied resources,
which is less reliable than provisioned server resources, fault
tolerance in face of node or link failure thus is important.
We discuss the failure of regular arbitrators and aggregators
separately as follows:

1) Regular arbitrators. Each arbitrator selects a random user
node as its backup arbitrator to store a copy of its game states.
If the user node fails, the backup arbitrator would transfer the
ownerships of game objects to all the enclosing arbitrators of
the failed node, so that state updates can continue. Of course,
when a user node fails, its avatar object is no longer online
and can be excluded from the transfer.

2) Aggregators. Each aggregator also has a capable user
node as its backup aggregator, which acts similarly as a
backup arbitrator and stores copies of the original aggregator’s
game objects. When an aggregator fails, the backup assumes
the original role of the failed aggregator (i.e. re-establishing
connections with neighboring nodes to handle events) and
finds a new backup aggregator with the help of the gateway
server. This design aims to assist a smooth transition back to
normal operations when aggregators fail.



B. Discussions

VSM supports existing update-based consistency control via
the use of arbitrators and can utilize existing methods for state
synchronization between peers and arbitrators. It is responsive
as most request - process - update - display sequences are
within three end-to-end hops (i.e. peer → managing arbitrator
→ neighboring arbitrator(s) → peers in nearby cells). VSM
can scale as client resources can be added, while aggregation
in crowded areas helps to balance loads. Fault tolerance is
supported by state replications on backup nodes, which may
immediately transfer out ownerships or assume managing
responsibilities for aggregators. Finally, as virtual peers and
aggregators can be provided by servers, VSM allows both
server and client resources to integrate in the same framework,
thus provides a transition from client-server to P2P MMOGs.

V. RELATED WORK

Few work exists on state management for P2P VEs. SimMud
[10] supports basic state management via superpeers within
fixed-size regions. VSM has gone further to allow dynamic
region partitioning. Colyseus [12] supports first person shooter
(FPS) games based on DHTs, but the log(n) query in DHT
may create unacceptable object discovery latency for large
node size. By using VON [4], VSM discovers objects within
bounded query hops. Time Prisoner [13] has basic state man-
agement in superpeer-managed zones, but does not consider
inter-zone interactions or load balancing. HYMS [11] and
Hydra [14] consider fault tolerance issues, but still rely heavily
on server resources. Naor and Wieder [36] propose Voronoi
partitioning for DHT overlays, but only fixed node locations
are considered. Chen and Lee first suggest the use of Voronoi
to partition VEs [37], but details are not given. Ohnishi et al.
[8] describe a Delaunay (dual of Voronoi diagrams) overlay for
VEs, but without considering state management. Our concept
of aggregators is similar in spirit to the node clustering scheme
recently proposed by Varvello et al. [9] for Delaunay overlays.
However, they do not deal with superpeer overloads when node
density increases, while other state management aspects such
as consistency control are also not considered.

VI. CONCLUSION

We have presented Voronoi State Management (VSM), a
P2P state management scheme that aims to utilize both client
and server resources in a seamless manner. We are now
evaluating VSM via simulations with regard to bandwidth
usage and the actual effectiveness of the load balancing and
fault tolerance mechanisms. VSM provides some interesting
possibilities for additional design improvements, for example:
if aggregators move with their peers, connection handoff may
become fewer, or if arbitrators handle only dynamic avatar
objects, then ownership transfers for the more static objects
can be avoided. We believe that Voronoi partitioning and
dynamic superpeer elevations are promising approaches to
handle the difficult load balancing and fault tolerance issues
in VE state management, and as such, they provide a unique
space for various policy designs in the future.
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