
Voronoi State Management for
Peer-to-Peer

Massively Multiplayer Online Games

4th IEEE NIME 2008
Las Vegas, USA

Shun-Yun Hu (胡舜元)
syhu@yahoo.com

National Central University, Taiwan, R.O.C.
2008/01/12

 2/

Adaptive Computing and Networking Lab, CSIE, NCU

State of Online Games Today

 Massively Multiplayer Online Game (MMOG) is
the fastest growing game genre
 World of Warcraft (9 M subscribers, 500,000 online)
 Second Life (10 M accounts, millions of transactions)

 Max. concurrent users in a world
 MMORPG: 2,000 ~ 3,000
 EVE Online: 30,000
 Second Life: 30,000 ~ 45,000

 3/

Adaptive Computing and Networking Lab, CSIE, NCU

Motivation

 Today's MMOGs face scalability limitations
addressable by peer-to-peer (P2P) solutions

 Goal: A continuous seamless virtual world with
 millions of concurrent users

 Challenges:
 Heterogeneity
 Churn
 Hacking

 4/

Adaptive Computing and Networking Lab, CSIE, NCU

MMOG server clusters (1/3)
 Replication-based (proxy server & mirror servers)

[Mauve et al. 2002] [Cronin et al. 2002]

 5/

Adaptive Computing and Networking Lab, CSIE, NCU

MMOG server clusters (2/3)

 Object-based

[Lu et al. 2006][Lui et al. 2002]

 6/

Adaptive Computing and Networking Lab, CSIE, NCU

MMOG server clusters (3/3)

 Zone-based

 7/

Adaptive Computing and Networking Lab, CSIE, NCU

MMOG server cluster issues
 Partitioning (static, dynamic)
 Load balancing (global vs. local)

 Main trade-off:
computation load vs. inter-server communication

 Main limitations:
Scalability (limited total resources)
Load balancing (high user density hotspots)

 8/

Adaptive Computing and Networking Lab, CSIE, NCU

Voronoi State Management
 Assumption: states stored in objects with (x,y)
 Initial idea:

Let game states be managed by all clients
Two roles for each client: peers & arbitrators
 i.e. Voronoi partitioning

 Three problems:
 O(n2) connections at hotspots
 Some cells have large sizes
 Constant ownership transfer

 9/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: basic ideas
 Connection overload → Aggregators clustering
 Large cell-size → Virtual peers
 Constant transfers → Explicit ownership transfer

 10/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: Consistency control
 managing arbitrator

receives and
processes events

 Events are
forwarded if
necessary

 Resulting updates
are sent to affected
arbitrators

 11/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: Load balancing
 Traditional: high-capacity nodes first, then adjust
 VSM: low-capacity nodes first, then cluster

 Assume known load detections
 Overload, underload defined

 Overload: ask gateway for aggregator, submit control
 Underload: disintegrate, release control

 12/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: Load balancing (2)
 Sphere of control adjustable
 More than one aggregator → choose nearest

 13/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: Fault tolerance

 Regular arbitrator:
 Pick backup arbitrator, backup states
 Backup transfers ownership to enclosing arbitrators

 Aggregators:
 Pick backup aggregators
 Take over original if failed
 Choose new backup

 14/

Adaptive Computing and Networking Lab, CSIE, NCU

Discussions
 Consistency → existing update-based
 Responsiveness → most events in 2 to 3 hops
 Load balancing → dynamic aggregation
 Reliability → backup nodes

 Persistency
 Security

 15/

Adaptive Computing and Networking Lab, CSIE, NCU

Conclusion

 VSM utilizes
 Voronoi partitioning
 Existing consistency control
 Clustering & superpeers (heterogeneity)
 Backup nodes (churn)

 Future ideas
 Aggregators move with nodes
 Separate management of dynamic / static objects

 16/

Adaptive Computing and Networking Lab, CSIE, NCU

VSM: Consistency control
 Update-based
 Events sent to managing arbitrator
 managing arbitrator decides whether to forward
 Each arbitrator makes own decisions
 Send updates

 Attribute-level locks for transaction update
 A arbitrator notifies B arbitrator (get lock)
 A modifies states
 B modifies states, release lock
 A receives confirm, transaction done

 17/

Adaptive Computing and Networking Lab, CSIE, NCU

Networking Models for Games

 Point-to-Point vs. Client-server

ex. RTS ex. FPS, MMOG
[Cronin et al. 2002]

 18/

Adaptive Computing and Networking Lab, CSIE, NCU

Consistency Models for Games

 Event-based (often with point-to-point)
 Events sent to all nodes
 Nodes advance logical time together
 Same states + same event executions

 Update-based (often with client-server)
 Events sent to server node only
 Server advances logical time
 Server states + client synchronization via updates

