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中文摘要：

如同像大型多人線上遊戲 (Massively Multi-player Online Games, MMOGs) 這樣的

網路虛擬環境 (Networked Virtual Environments, NVEs) 隨著時間逐漸變得越來越受歡

迎。現在的系統大多採用以伺服器為主的主從式架構 (Client-server architectures)，但

此架構也因為同一伺服器所能同時服務人數有限，進而限制了可能的同時最大使用

者。另一方面，同儕式 (Peer-to-peer) 網路逐漸被證明它可被用來解決許多網路應用的

可擴充性 (Scalability) 問題。透過分享與使用網路節點 (Peer) 的資源，同儕式網路將

可提供資源解決伺服器資源不足的問題。

我們提出了以同儕式網路為基礎之網路虛擬環境狀態管理系統，稱之為范諾圖狀

態管理 (Voronoi State Management, VSM)，主要用以解決以同儕網路為基礎的虛擬世

界中的物件管理問題。本系統使用范諾圖 (Voronoi Diagram) 來分割環境，並將狀態管

理成本分散至化身物件處於鄰近的節點上。當系統負載正常時，所有的使用者可透過

直接連線的方式交換狀態更新資訊，但在需要時（系統負載過重，或是使用者電腦資

源不足以負擔該區的管理所需時），將會尋找並喚起能力較強之使用者電腦來擔任集

中管理者（Aggregator，簡稱集管者）。集管者將會同時管理多個小區域來減輕其他使

用者電腦之負載過重情形；同時也會動態地調整其管理區域的大小來平衡系統負載。

透過模擬結果顯示，本系統可支援一個網路虛擬環境所需的一致性 (Consistency) 、可

擴充性和負載平衡 (Load balancing) 等特性。

關關關鍵鍵鍵字字字：：：同儕式網路、網路虛擬環境、范諾圖、狀態管理
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Abstract– Networked Virtual Environments (NVEs), such as Massively Multi-player

Online Games (MMOGs), have become more and more popular nowadays. Current sys-

tems use server-based architectures which possess bottlenecks for the number of concurrent

online users on a single server. Peer-to-Peer (P2P) systems have been shown as a feasible

solution to scalability in many network applications. Through the resource sharing of

peers, P2P systems can be seen as an additional source of resources for improving the

lack of server resources.

We propose a state management strategy for supporting P2P-based virtual environ-

ments called Voronoi State Management (VSM). By using Voronoi diagram to divide the

environment, VSM can distribute the management loading of the system onto selected

nodes. Every peer in VSM represents as one site on the Voronoi diagram, and manages

the nearest Voronoi cell. When load increases due to a higher density of objects/peers,

VSM promotes a capable node called aggregator to join the overloaded area and take over

the loads. An aggregator also dynamically adjusts its covering area according to system

load. Simulation results show that VSM can achieve the NVE property of consistency,

scalability, and load balancing.

Keywords–Peer-to-Peer, NVE, Voronoi diagram, State management
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1 INTRODUCTION

1 Introduction

A Networked Virtual Environment (NVE) is a virtual world generated by computers,

in which users may be geographically distributed and control their virtual characters,

called avatars, to interact with each other via message exchanges. NVE has become

more and more popular nowadays, for example, a famous Massively Multi-player Online

Game (MMOG), World of Warcraft [1], has more than one hundred thousand online

users simultaneously. Second Life [2], which is a social-based NVE, also has over 10

million registered accounts, of which over 1 million are active (i.e., has been on-line in

a recent two-month period). To host such massive number of users, the system must be

scalable and affordable.

A NVE can be seen as composed of many objects, each of which describes an entity

that has many attributes called states, such as the object’s type, shape, color, etc.. There

must also be some rules describing how the worlds should work for VEs, and are called

world logic, or game logic for games. For example, a rule may state that ”everything in the

VE is attracted by Gravity, so it will fall if not propped by the ground or other objects.”

Users who join a NVE may act through a virtual character called avatar, who has an

area called Area of Interest (AOI) within which the user can see and interact. Executing

world logic in order to modify and distribute states is called state management, and is a

fundamental requirement to operate an NVE.

Basic requirements for NVEs are consistency, scalability, load balancing, and fault

tolerance. Further requirements may include anti-cheating, security, and persistency [3, 4].

Consistency is a basic requirement since a single virtual world should have a consistent

view for each participants. Both scalability and load balancing share similar goal of

increasing the number of online users for a virtual world. More precisely, scalability

focuses on the upper limit of the number of concurrent entities (i.e., users), but load

balancing focuses on balancing workload for every participating node. Fault tolerance is

an important property since faults may happen due to various reasons, and may cause

unpredictable damages to the system. Additionally, potential cheating should be avoided

from either a good design or implementation, and security should be ensured. Persistency

1



1 INTRODUCTION

is a special property for some massive VEs, it is to ensure that the users’ states are stored

for a long time period, as long as the VE is still in operation.

Current NVEs adopt server-based architectures due to their maturity and security,

where all processing are done at server-side, and clients only send requests or receive up-

dates. State management in server-cluster architecture is a consistency control problem,

and a common definition is how to make states consistent between any number of interact-

ing participants at any given time. The goal is to minimize the duration in which states

are inconsistent and the side effects (e.g., latency or transmission overhead) caused by

the consistency control mechanism. Many schemes have been proposed to achieve better

consistency with specific goals [5, 6, 7], or to distribute loads between servers (i.e., inter-

server load balancing) [8, 9]. When the number of servers is fixed, the total amount of

usable resources is limited to the servers’ resources, and may not satisfy the requirements

to build Massively Multiuser Virtual Environments (MMVEs) which include millions of

users. In addition, server-clusters are costly to develop, deploy, and maintain [10]. Some

researches [3, 11, 12] thus try to solve this problem with Peer-to-Peer (P2P) architectures.

P2P-based architectures have been proven as a usable and feasible solution for many

applications, such as media streaming [13, 14], Voice over IP (VoIP) [15], and especially

file sharing [16]. Through sharing the resources of peers (including computation power,

bandwidth, storage, and other resources), P2P networks provide the possibility of an

unlimited resource pool that grows with the number of peers.

The first problem we face for P2P-based state management is a connectivity problem.

For server-based architectures, all servers are known in advance during most of the system

operation time, and thus can be located easily by a fixed mapping table, but such is

not true for P2P-based architectures. For P2P VE research, this is actually a common

discovery problem. Several solutions to the problem [3, 11, 12, 17, 18, 19, 20, 21, 22, 23]

have been proposed, as well as some improvements [24]. As the discovery problem is

more or less solved, further researches [4, 25, 26] then direct at the problem of state

management, but no comprehensive solutions have been shown.

In this thesis, we propose a new state management strategy for P2P VE called Voronoi

State Management (VSM). Basically, VSM divides the VE into cells according to a Voronoi

2



1 INTRODUCTION

diagram [27], and uses the positions of the avatars as the associated sites for each cells.

Each cell has a manager, called arbitrator, which is run on the client whose avatar resides

in the cell. Arbitrator of a cell is the owner of all VE objects in the cell, and has the rights

and responsibility to modify and distribute the objects’ states. When workload increases

over a pre-defined threshold, VSM tries to decrease workload by clustering arbitrators and

have them taken over by a selected, but capable superpeer called aggregator. However,

as aggregators still may overload when the object density or event frequency are high, an

overloaded aggregator thus may try to decrease the load by reducing its sphere of control.

As this may raise the workload on peers again, another cluster may be established by

similar mechanism. We also evaluate the performance of VSM through simulations of a

small hunt-and-gather game.

The rest of this thesis is organized as follows. Requirements for P2P NVE, back-

ground, and related work are in Chapter 2. In Chapter 3, a problem formulation for state

management is given. Detailed designs and evaluations of VSM are shown in Chapter 4

and 5, respectively. Finally, conclusion of this thesis is given in Chapter 6.

3



2 RELATED WORK

2 Related Work

In this chapter, we will describe the background and related work for VE state manage-

ment. In the first section, requirements for P2P NVE and background for state manage-

ment in the past is shown, and the second part consists of two parts: consistency control

and server-based architectures. In Section 2, the discovery problem and recent work on

P2P state management are introduced.

2.1 Background

2.1.1 Requirements of P2P NVE

As described in [3, 4, 26, 28], there are 7 requirements for P2P NVEs described separately

below. The first 4 requirements are fundamental requirements for every P2P-based state

management system.

Consistency Consistency is a basic requirement for NVEs, which deals with how to

handle and converge differences between the users’ views. Since perfect consistency (i.e.,

all participants have exactly the same view at a given moment in time) cannot be achieved

due to the existence of network latency, the main concern for consistency thus becomes

how to reduce or bound inconsistency to levels that are acceptable. Furthermore, how

much inconsistency is acceptable depends on the application types and requirements. It

is also an important factor affecting the users’ perception for the environment. If there

exists differences significant enough between users’ views, users may fail to understand

each other or the world and the sociability or the usability of the system thus may reduce.

Scalability An environment may have millions of users, as described in Chapter 1, so

how to accommodate a huge number of users must be considered. A common trait of

scalable systems is that resources consumed by each node (both clients and servers) will

not increase with the number of users. In another word, it is easy to imagine that every

single peer consumes some computation and communication resources of the system to

interact with the environment, and given a fixed resource pool (e.g., a fixed-size server

4



2 RELATED WORK

cluster), after a certain number of users have joined the system, resources will run out. The

issue that considers the total number of users is called system scalability, and another type

of scalability is AOI scalability, which focuses on increasing the number of users within

the range of an AOI radius.

Load balancing Different from scalability that considers system-wide workload dis-

tribution, load balancing concerns how to avoid overloading for any participating hosts

(i.e., both clients and servers). Since load may distribute to all participants randomly

(depending on the system strategy), overloading may happen anytime. A system that

is load balanced can deal with the situation by transferring or decreasing the work load

before more critical problems (e.g., node failures) happen. This property becomes more

and more important as more load sharing and distribution schemes are adopted, both for

server-cluster or peer-to-peer architectures.

Fault tolerance Failure of participating nodes may incur critical system problems, like

data loss or system crash, fault tolerance thus is an important property. Different prob-

lem considerations exist for peer-to-peer or server-based architectures. For server-based

architectures, most of the problems it faces are hardware or software failures. However, as

peer-to-peer networks consist of peers that may have significantly different capacities and

high dynamics (i.e., peer may join or leave the network at any moment), so the problem

of node failures (i.e., leaving suddenly) must be considered more seriously.

The following are advanced requirements which may not be needed by all applications,

but can still be critical issues for some specific environments.

Cheat avoidance The problem of cheating comes from the unpredictable trustwor-

thiness of participating nodes. For server-based architectures, the server(s) is always

trustable and under controlled, any decisions made are thus authoritative and considered

as the final results. For a peer-to-peer network, since each nodes may modify any pro-

gram run on itself, they should therefore be treated as potential cheating nodes. Since we

cannot predict if a peer cheats or not, whether states are advanced normally also becomes

unpredictable.

5
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Security Security and privacy control are basic requirements for all types of applications

before they can be practically adopted in the real world. Remaining security issues for

hosting virtual environments excluding cheating, are mainly users privacy control and

protection of users’ wealth in the environment. This problem is considered as the last

step (together with cheating avoidance) before a system becomes applicable.

Persistency Persistency is a critical property for specific types of applications, like

MMOGs, since they must be on-line 24 hours a day. The goal is to ensure that the states

in a world can be preserved while changing forward. Players may log in and out of the

server at any time, while retaining their status (e.g., levels, experience points, amount of

in-game currency). Persistency is usually provided by transactional databases that keep

continuous records of all important game state updates.

2.1.2 Network Model and Consistency Model

State transitions in VEs can be seen as operations of finite state machines, where states

transit by world logic and inputs (i.e., events) generated by user actions or VE semantics.

A world logic is a set of rules on how the VE operates, similar to laws of Physics for

the real world. Once states have been modified, state updates are then distributed. State

management therefore can be understood as a request - process - update - display sequence.

A state management system for NVE can be understood from its consistency model

(i.e., how state updates and distributes across nodes) and networking model (i.e., how

nodes connect and communicate). The consistency model and networking model usually

depend on each other, and if not, consistency may not be guaranteed. In networking, two

main architectures are point-to-point (also known as peer-to-peer, to distinguish between

them, the word here indicates fully connected peer-to-peer network) and client-server

(including traditional client-server or server-cluster networks). In point-to-point, peers

connect to all other peers for exchanging messages. It usually has the lowest transmission

latency between peers, but heavy bandwidth requirement due to its O(n2) communication

cost. In client-server, all nodes connect to the server(s), and can only exchange messages

via the server(s). Differ from point-to-point, client-server has a cheaper communication

6
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cost of O(n) [29], but server(s) may become the single point of failure.

Two common consistency models in use today are the update-based and the event-based

models. Update-based consistency, as the name implies, is a consistency model based on

distributing updates, or more precisely, executing the ’event then update’ sequence. It

is often used on client-server architectures, where a central authority (i.e., the owner) is

assigned for each object, and has the rights to modify and distribute the objects. Owners

also serialize and execute the events. Events thus can be seen as requests to update one

or more objects, and once some states have been modified, updates are then distributed.

This is the most adopted consistency model for client-server applications which include

most of the current MMOGs. In the case of using update-based model with client-server,

the server maintains a full set of authoritative states, and consistency is achieved by

making the clients’ states as closely matched to the servers’ as possible. Advantages

of this consistency model is that the owner of objects can advance logic clock without

considering networking latency or waiting for other late coming messages, so the VE’s

operations will not be affected by the failures of clients. On the other hand, the failure

of an owner will affect, at least, its managed objects, or even crash the whole system in

the worst case.

Event-based consistency model stands from the basis that if two or more nodes have the

same initial states and execute the same events, they will have the same final states [30].

Starting from this basis, all nodes running event-based consistency model need to exchange

all relevant events occurred at every time step, and then process all events respectively. As

long as each node has the same states and run events in the same sequence (may just need

to be roughly the same, depending on the consistency requirements), states on all nodes

should be more or less consistent. In the process, it is important that the sequence of event

execution must be synchronized, so various conservative (e.g., lock-step) and optimistic

(e.g., Time Wrap [5], TSS [6], OSS [7], ILA-RED [31]) synchronization schemes have been

proposed. This kind of consistency model has the advantage that when there are a large

number of objects following the same logic, we can use just a few event messages to update

them all [30] without having to distribute a large number of state updates. But it also

inherits the same problem from a point-to-point topology, where the communication cost

7
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may become more and more expensive with the number of participating nodes increasing.

Strict synchronization among the nodes may also mean that logical time could progress

at the speed of the slowest node.

2.1.3 Server-cluster State Management Schemes

To scale up virtual worlds, a common strategy is duplicated worlds, which replicates the

VE to two or more duplicated worlds, each of which has exactly the same content, but all

are independent, and cannot have any kind of interactions across worlds. Although the

number of concurrent online users can be significantly increased, sociality and realism are

also sacrificed.

To scale up a single virtual world, three common schemes exist in current server-cluster

designs.

Replication-based Replication-based model [6] follows the basic principles of event-

based consistency, in that all servers replicate all states in the world, and clients can

choose the best server to connect. Event-based consistency is used between servers, who

exchange among themselves the received events from clients on every step. Because the

set of duplicated servers can be seen as a single server, update-based strategy is used

between the clients and the servers. Although networking cost is distributed using the

strategy, processing cost still remains unchanged, and may become unaffordable as it

grows at O(n2).

Object-based Object-based model [8] considers not only distributing networking cost,

but also processing cost. In this strategy, objects are distributed to servers based on

selected optimizing function, and update-based consistency is used between servers. Ob-

jects’ replicas may be created on servers whose AOI cover the object, where a server’s

AOI is determined by the objects that it manages. There must be an object querying

service to discover new objects, and also to query where an object is located. This strat-

egy is highly adjustable for objects distribution, but there are extra costs to maintain the

locations and replicas of objects, and inter-server communication may still be heavy if

many objects interact across servers.

8
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Zone-based Zone-based strategies [32] are widely used by current MMOGs. Differ

from object-based, zone-based schemes distribute objects onto servers by the positions

of objects in the virtual world. Due to the fact that most virtual world interactions

are localized, the strategy minimizes the communication needed between servers, and is

simpler to design.

2.2 P2P-based Architecture

Several schemes [3, 11, 12, 18] have been proposed to solve the problem of neighbor

discovery, and some other work have considered state management [11, 18]. We categorize

these schemes into DHT-based or graph-based strategies.

2.2.1 Discovery Problem

DHT-based SimMud [11] and Colyseus [18] use Distributed Hash Table (DHT) overlay

as its basis of the network structure. Furthermore, they also consider state management,

we will have detailed descriptions later.

Graph-based Solipsis [12, 17] proposes an algorithm for P2P VE to ensure the connec-

tivity of the network. In Solipsis, all nodes connect directly to their AOI neighbors, which

must form a convex hull to cover the node itself (Figure 1 (a)). If not (Figure 1 (b)), the

node should recover the convex hull by finding additional neighboring nodes. Neighbor

discovery is done through mutual notifications by nodes who form the convex hull.

This thesis’ origin is based on VON [3, 33], which also proposes a fully distributed

P2P overlay network. All nodes in VON connect to their neighbors directly, and exchange

messages (only movements and neighbor notifications) through direct connections. A later

forwarding scheme has also been proposed as an improvement [24, 34]. Each node in the

system uses its own and all neighbors’ positions to locally construct a Voronoi diagram.

The original definition of Voronoi diagram is that: given a set of points as sites on a plane,

the plane is divided into multiple cells (i.e., the polygon formed by Voronoi diagram), each

of which contains exactly one site. The nearest site to any point in the cell is the site that

defines the cell [35]. In VON’s design, as shown in Figure 2, enclosing neighbors are the
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e

a) b)

e

Figure 1: An example of Solipsis: (a) The node e is covered within a convex hull formed
by its neighbors; (b) The node e is not covered by the convex hull.

neighbors who share at least one common edge with the node, and boundary neighbors

are the neighbors whose Voronoi cells overlap the node’s AOI. In the system, nodes

always minimally keep connections with their enclosing neighbors, and inform boundary

neighbors to notify them about new neighbors. By a few simple rules, VON constructs a

P2P overlay network with only local information. Additionally, VON also prevents peer

overloading by shrinking its AOI to decrease bandwidth consumption without affecting

the operation of overlay construction.

2.2.2 Peer-to-Peer State Management

Few work exists that target on state management for P2P VEs. Chen and Lee [36] first

suggest to use Voronoi diagram to partition VE, but no further scheme was proposed.

SimMud [11] proposes a region-based strategy for P2P VE based on Pastry [37] and

Scribe [38]. The VE formed by SimMud consists of a few independent regions, each of

which have one coordinator who is the node with the nearest hashed ID value to the

region’s ID on the DHT formed by Pastry. Message exchange in the region is performed

through application layer multicast (ALM) by Scribe, where the coordinator is a tree root.

As shown in Figure 3, messages in a region are transmitted through multicast or direct

connections, and inter-region communication depends on DHT. SimMud supports basic

10



2 RELATED WORK

Figure 2: An example of VON
An example of the node’s enclosing neighbors (¥) and boundary neighbors (N), and some
nodes that are both enclosing and boundary neighbors(F).

state management by coordinators (i.e., superpeers), but fixed and independent regions

lack flexibility and applicability. Inter-region interactions are also not considered.

Food

Player

Multicast

Multicast

Direct connection

Region 1

Region 2

Region 3

Figure 3: System design of SimMud

Colyseus [18] proposes also a DHT-based scheme, but goes one more step to support

simple consistency control, and evaluates their scheme on a First Person Shooter (FPS)

game, Quake II. As mentioned earlier, by using the DHT Mercury [39] that supports

range queries, VE neighbors can be discovered by querying the AOI range of a node on

the DHT. The consistency control in Colyseus has only replica control, where each object

11
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in the system has exactly one primary copy and zero to more secondary replica copies

(or replica for short). When an event is generated, a request to update the object is first

sent and serialized at the primary, then distributed to all nodes who has a replica. The

system architecture is shown in Figure 4. Although Colyseus contains designs for both

consistency and scalability, but the log(n) query latency on DHT for object discovery and

the overhead of maintaining DHT may become performance bottlenecks when there are

a large number of users in the system.

Figure 4: System architecture of Colyseus

Hydra [25] proposes a peer-to-peer architecture that considers fault tolerance issues.

Differ from the previous schemes that consider VE plane divisions, Hydra focuses on

server architecture and the message exchanging between servers (note the ’servers’ may

also indicate superpeers for P2P VE). Hydra assumes a world formed by individual regions

as SimMud, and use slices, each of which manages a region’s game states, to run on servers.

As shown in Figure 5, there may be multiple slices for one region, one of them is called the

primary slice, which is the owner of the region, and the others are backup slices. Clients

send events to both the primary slice and backup slices. Once the primary slice executes

the events, update commitments are sent to backup slices, where the objects are updated

with new states, and the cached events related to the update are cleaned up. When

the primary slice fails, one of the backup slices will take over the original primary slice,

and execute the cached events which have not been committed by the primary slice, and

continue to advance the region’s logical time. Hydra proposes a workable fault tolerance

architecture, but servers and slices must be tracked by a Global Tracker (i.e., a central

server) which takes queries for newly joined peers, it may thus be a bottleneck or a single

12
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point of failure.

Global
Tracker

Client Proxy

Slice

Hydra ServerHydra Server

Slice
Backup

Client

Figure 5: System architecture of Hydra

In [26], the authors try to extend Solipsis to support state management, and propose

several topics to consider. Their proposed design includes that each entity (i.e., object)

in the virtual world should have an entity descriptor to link objects with their 3D models,

P2P overlay construction, decentralized physics computation, object management, and

3D model sharing (also known as P2P 3D Streaming [14]). They have also implemented

a web-based navigator to demonstrate their scheme. The authors of Peers@Play project

[4, 23] propose the considerations and software architecture to construct a P2P VE. They

propose a few requirements for P2P VE, suggestions for VE consistency models, and

software architectures. For a P2P VE consistency infrastructure, they suggest to consider

flexibility (to adapt the diversity of games), adaptability (to adapt the dynamics of P2P

network), and extensibility (consistency model can be extended by game developers).

Buyukkaya and Abdallah [28] propose an interest management algorithm for Voronoi

diagram-based state management that could determine the region of broadcasting up-

dates. The strategy uses only local information, and is based on Voronoi diagrams and

the assumptions of fixed AOI radius. Through calculating the convex hull of the managed

objects and extending the region for AOI, as shown in Figure 6, the potential positions

(light-gray region) where other objects and the managed objects may see each other can

be decided. By determining the proper subscribing region for updates, the problem of

disseminating updates can be easily solved.
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Figure 6: Visibility region of managing objects in Buyukkaya’s scheme

14



3 PROBLEM FORMULATION

3 Problem Formulation

As mentioned, a NVE is a computer-generated world, and to construct a virtual envi-

ronment, two types of data are needed: fixed and variable data (referred as static and

dynamic objects in [28]). Fixed data, such as 3D content (3D models/textures), topogra-

phies, etc., are rarely changed and huge in data size (in general, at least between 300 to

500 MB, in fact, more than 5 GB is needed for World of Warcraft). Since fixed data is

changed infrequently and usually will be pre-installed together with the main program, in

most current applications, we do not focus on how it is distributed or modified. Besides,

there has been some studies that focus on the topic of progressive transmission of such

fixed data (also known as 3D streaming) [14].

Variable data are the states that may be changed rapidly in the environment, for

example, positions of avatars, clothes worn, etc. In VSM, we adopt the model that the

environment is described by objects and attributes. That is, the environment consists of

many objects, and each object has many attributes to describe its states. For example,

a table in the VE may be represented by an object which has a number of attributes

describing its features, like its position (where it is placed), type (a dinner table or a

coffee table), size (how high and wide it is), color, etc. The set of objects, attributes, or

any combinations of them are called the states of the environment.

States should be modified according to working rules of the VE, called world logic (or

game logic for game-based environments). World logic is a set of rules describing how

the environment works, its rules for progression, or physical limitations, similar to the

laws of Physics for the physical world. All state transitions should follow the rules. A

basic requirement to build up a networked virtual environment, where the world logic is

followed to modify and distribute states, thus requires a state management system. To

summarize the problem, a formal definition of state management is given in the next

section.

Problem Formulation of State Management We use following assumptions about

a VE system:
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1. A virtual world is a 2D plane with a fixed width and height, and filled with many

objects, each of which has its position on the plane.

2. Objects are in the form of (name, attribute-list, x-coord, y-coord). Name is an

identifier of the object, x and y-coord defne its position on the plane (shown only

for objects lying on the VE plane).

3. Attributes are in the form of (name, type, value). Name is also an identifier of the

attribute, type may be a simple data type such as int, float, string or object, and

value is value of the attribute.

4. States (i.e., objects and attributes) are created, updated, and destroyed by process-

ing events based on the world logic of the environment. Once objects are updated,

modified states need to be distributed to all interested parties (i.e., avatars).

5. Each peer is represented by an avatar object, which is a regular object controlled by

the player. All players have a fixed and system-specific AOI-radius, within which

objects and avatars may have interactions with each other by generating some events

(i.e., all events only influence objects within the AOI of the player that generates

the event).
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4 Proposed Scheme

In this chapter, we will describe the detailed design of VSM. The main purpose of VSM

is to support state management on peer-to-peer networks, and the goal we targeting is

to manage the distributed states of the virtual world and to balance the loads between

participating peers. We first present an overview of the key ideas of VSM in Section 1.

Afterwards, we describe the detailed design of VSM. For the last section, some additional

issues for improving the performance and extensibility of VSM are given.

4.1 Basic Idea

The basic design of VSM can be seen from two aspects: architectural and operational.

From the architectural perspective, we can describe the roles nodes play in VSM, what

responsibilities they have, and how they collaborate to manage the world. Based on the

architectural design, currently VSM has a distribution-based design for its operations,

but we also introduce other possible operational designs in Section 4.3.

VSM defines for participating nodes several roles categorized by their responsibilities,

and several roles may be executed on a single node. We first introduce two roles: peers and

arbitrators, which are similar to the clients and the servers in client-server architectures.

Users join the environment as peers, who control their avatars by sending action requests

as events and receive updates for the environment. As peers receive updates about the

environment, they can render the virtual world based on the updated states and the

pre-installed fixed objects mentioned in Chapter 3.

Arbitrators act as servers to arbitrate the modifications of states by following the world

logic and distribute them to those who are interested. All arbitrators share the manage-

ment of the environment through the divisions via Voronoi diagrams (called Voronoi

division for short, see Figure 7). We use similar rules of Voronoi diagram. In VSM,

the environment is divided by the arbitrators’ positions, and the cell formed is called

the managed area of the arbitrator. Objects within a given managed area are owned by

the arbitrator, who is known as the managing arbitrator of the objects. An example of

Voronoi division is given in Figure 8, in which circles represents arbitrators and squares
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Figure 7: An example of Voronoi diagram
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Figure 8: An example of Voronoi division
In the figure, circles (◦) represent arbitrators and squares (¤) represent objects, numbers
marked on the object indicate the object owner’s node id.

represent objects in the VE, and object owners’ node IDs are marked besides the objects.

In other words, objects are managed by the nearest arbitrator to their positions, and

peers are managed by whoever manages their avatar objects. In summary, all arbitrators

form a Voronoi diagram, where both objects and peers (i.e., avatar objects) are managed

by the arbitrator designated for each Voronoi cells.

From the operational view, VSM follows the idea of a fully distributed network, where

each peers can be responsible for the area in which its avatar stay, so that a central

resource allocator is not needed. Therefore, we let every node join the system as both

peer and arbitrator first, and make the arbitrator move with the avatar object of the peer
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(i.e., each peer manages the cell it stays).

4.2 Detailed Design

4.2.1 Consistency Control

VSM adopts the update-based consistency model, that is, each object has an authoritative

owner (i.e., arbitrator), where events, which can be seen as requests to modify the object,

are serialized and executed. All events sent by a peer should be sent to its managing

arbitrator first, then forwarded to owner(s) of the object(s) that may be affected by the

event. Avatar objects also have their managing arbitrators, and each peer connects to its

managing arbitrator for sending events and receiving updates. Object ownership transfer

is needed when the division of authority changes due to movements of the arbitrators or the

objects themselves. As small inconsistent views of cell boundaries (caused by inconsistent

views of arbitrator positions) or object positions (caused by missing or in-transit updates),

ownership transfers thus need explicit message exchange.

4.2.2 Load Balancing

Computation and bandwidth are the main bottleneck resources for arbitrators, and they

are affected by the number of managed objects and the activity levels of peers. More

specifically, workload (including computation or bandwidth consumption) is determined

by the number of objects, the rate of event generation, the complexity of world logic,

and the number of observers to whom updates must be delivered. VSM divides the

environment into cells and allocates arbitrators to manage them. While object distribution

is decided by the application designers and users, unbalanced load (e.g., overload) may

happen on any arbitrator. VSM assumes that there exists some load detection mechanism,

which can detect clients’ loading level (e.g., normal, overloaded, or underloaded). Once the

arbitrator’s workload increases over some pre-specified threshold, load balancing process

is invoked. Contrary to the traditional thoughts on load balancing, VSM tries to cluster

overloaded arbitrators onto one capable peer or server. On the first step of the load

balancing process, VSM chooses a node from a list of capable peers or, if available, a
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powerful server (methods to choose the node will be introduced in Section 4). A new

system role, aggregator, is then started on a selected node, and joins at the same spot as

the overloaded peer’s avatar position. An aggregator will cluster and take over arbitrators

within a sphere with specific radius (called its sphere of control), as shown in Figure

9. However, as aggregators still may be overloaded with a high object density, so it is

also allowed to shrink its sphere of control to decrease the number of managed objects

(alternatively, it could stretch the sphere of control when underloaded). This may cause

other load balancing processes on nearby peers, repeatedly until the load of the whole

system is balanced.

Figure 9: Aggregators take over overloaded arbitrators
Aggregators (F) take over arbitrators (¥, blue ones will be taken over) within its sphere
of control

4.3 Additional Issues

In this section, we address some problems that are not described in details in the previous

sections.

Selection of Capable Peers Capable nodes are used to deal with load unbalance by

acting as aggregators, and some possible methods for choosing aggregators are:

• through an external server
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• through random-walk spiders

• through gossiping

The simplest and most efficient way is to record nodes’ capacity information on a cen-

tral server, and get the proper nodes from the server when needed. Capable peers will

be recorded, together with their capacities, when entering the system. This method is

practical and efficient, but relies on extra server resources and may not be too scalable.

Random-walk spiders are similar to searching schemes on unstructured peer-to-peer

networks, that is, information of capable peers is collected through a information collection

spider who walks randomly through the network. More specifically, the spider starts from

the node that wants to collect the information, and randomly chooses one outgoing link to

move until suitable nodes are found or a threshold of hop count is reached. Once suitable

information is found, a direct connection to the spider-starting node is established to

return the information. This collection may be invoked any time the system operates,

and the results can be cached for later reference. Collecting information in this way is

fully distributed, with only little extra transmission overhead.

The last method gets capable nodes from gossiping, that is, capacity information

is periodically exchanged between arbitrators’ neighbors (i.e., capable node lists come

from neighbors in the past). The method may work well since it is independent of the

distribution of capable peers or the distribution of avatar objects. Consider the costs

required for the method, it is an efficient way to collect information.

Extensions for VSM VSM integrates peer-to-peer and client-server into a single scheme

and is a general-purpose state management scheme for P2P VEs, that can support a vari-

ety of different types of virtual worlds by adding some additional support. Session-based

VEs can be supported by VSM natively, like first person shooter (FPS) games, in which

players interact inside a game room up to a few hours. After a game session/room is

closed, nothing remains, and all records/scores in the session will be discard.

Getting one more step, VSM can also be used as a peer-assisted system (e.g., a low-

cost MMOG hosted by running VSM with light-weight servers). In the case of MMOG, an

external persistent storage service is also needed, but distributing states and running game
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logic are already supported by VSM. More specifically, servers may host some pre-inserted

aggregators with the full game states, then distribute managing rights of underloaded

areas to peers to save server resources and scale up the system.

Operation Designs VSM’s architectural design may be used for different purposes

by having different operational designs. Here, we just introduce a simple example of

using VSM with a powerful sever-cluster. Traditional server-cluster designs divide the

virtual world into a few fixed size areas, and replication is used at the boundary of

areas. When object distribution becomes clustered, one or more servers in the cluster may

become overloaded. Because VSM can dynamically adjust object allocation by moving

the positions of arbitrators, we can dynamically re-allocate objects by placing arbitrators

more optimally based on the density of objects.
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5 Evaluation

To evaluate our design of building a state management system for virtual worlds on peer-

to-peer networks, we use simulations for the evaluation of our scheme.

5.1 Simulation Environment

We design a simple hunt-and-gather game, the details of its rules are listed below.

1. There are avatars, food, and attractors distributed on the 2D VE plane.

2. Avatars has one basic attribute, health point, and can move around everywhere,

attack somebody, or eat food. Avatars’ moving speed is a constant world parameter.

3. Someone who is being attacked loses its health point, but eating some food increases

it back.

4. Total amount of food is fixed in the system, but is randomly distributed in the

environment. Once some food is eaten, it will be regenerated at a new random

position.

Avatars in the environment are controlled by simple AI semantics, and abide to the

following rules.

1. An avatar’s actions are determined by its health point and two stat points, fatigue

and anger.

2. Avatars increase the levels of anger and fatigue with movements. If a pre-defined

threshold for anger or fatigue is reached, the avatar gets into an angry or fatigued

state.

3. An angry avatar will randomly attack another avatar, which decreases its anger

stat.

4. A hurt avatar (health point is below a certain threshold) will seek some food to eat.
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5. A fatigued avatar will find the nearest attractor to rest, which can be seen as a

resting area centered around the attractor. Avatars in attractor’s coverage range

will have its fatigue stat decrease quickly.

6. Otherwise, avatars move around everywhere by random waypoint, that is, it chooses

a target point, moves to the point with a constant speed, and chooses another

random point to move.

7. Priorities among all actions are eating, resting, attacking, and moving.

We implement VSM using VAST [40] (an implementation of VON) as the underlying

overlay network, and the hunt-and-gather game on top of VSM. We assume a constant

end-to-end latency as one simulation step. For simplicity, no message losses, node failures,

or bandwidth limitation is used during the simulation. The simulation is performed on a

2000x2000 map, and between 100 to 500 nodes (avatars) are put inside, with AOI radius

of 50 and speed of 1. Update rate is 10 steps per second (i.e., transmission latency is

100ms). Each simulation is executed for 1000 steps (i.e., 100 simulation seconds).

5.2 Simulation Metrics

Several metrics described below are used to evaluate the system:

• Bandwidth: Bandwidth limitation is a main bottleneck for servers in client-server

architectures, and is also important for peer-to-peer architectures as it is more lim-

ited for peers. From several previous research [18], system availability and quality

is directly related to the amount of remaining network resources. Our main concern

for the metric is how the bandwidth of aggregators and arbitrators is used, because

they are the main service providers in the system.

• Consistency: Consistency is a basic requirement for state management, but perfect

consistency cannot be achieved due to network latency or the consistency model

used. Therefore, our main concern here is how inconsistent the world is. We separate

the consistency of the system into two indicators: discovery consistency and update

consistency.
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Discovery consistency(DC) This indicator measures how well objects are discov-

ered for all peers, given set of all peers ρ, it is defined as

DC =

∑
p Dp

|ρ| , p ∈ ρ

where Dp is the number of correctly discovered objects for peer p, and |ρ| is total

number of peers. That is, if one sees all objects it should see and none of objects

it should not see, discovery consistency should then be 100%. In another example,

if there are 15 objects in the world, 10 objects that should be discovered for a

specific peer, and 8 objects are correctly discovered, 1 object is extra discovered,

the discovery consistency is then is ((10− 2) + (5− 1))/15 = 80%.

Update consistency(UC) This indicator measures how well updates are deliv-

ered. DC measures the correctness of object discovery, but it is not enough to just

correctly discover objects. Once an object is known, the next problem is how fast

future updates can be learned after modifications are made. Since transmission la-

tency cannot be avoided, our main concern becomes how much time is needed to

deliver the proper updates. Thus, UC is defined as, for a peer p and objects in

its knowledge Op (we call the place storing all objects as the object store), update

consistency at a future time step t, (UCt) is defined as

UCt =
∑

p

NROp,t

NOp

where NROp,t is the number of objects in store Op whose states are newer or equal

to the owners’ historical states t steps earlier, NOp is number of objects in store

Op. The idea is to see how well the current states in the object store converge

with the authoritative versions of the object states at some earlier time. Note that

objects concerned here are only the correctly discovered ones, which is different

from discovery consistency. For example, there has 5 objects I discovered correctly,

versions of which are {22, 17, 11, 15, 23}, and at time t, versions of them are {18,

17, 12, 16, 23}. So UCt for me is 3/5 (cause third and fourth object is older than
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time t’s version).

5.3 Simulation Results

First, we will show the consistency and scalability of VSM. Figure 10 shows the overall

consistency of the system achieved by VSM. As described, we separate consistency into

two different aspects: discovery consistency (DC) and update consistency (UC), UC-0 to

2 means how consistent the object stores are with the owners’ states after some specified

simulation steps. Pos or State indicate the consistency for position or normal object

states, respectively. The figure shows that VSM can achieve discovery consistency near

100%, but a little inconsistency still may happen near the boundary of AOI. Since this

problem may be solved by extending peers’ AOI to add a buffer zone, we consider it

a future improvement that can be trivially addressed. Update inconsistency is due to

network transmission latency between the owner and replicas’ states, the latency ideally

varies from 1 (changed objects are managed by the same managing arbitrator as the re-

ceiving peers) to 2 (changed objects are owned by a neighboring arbitrator of the receiving

peers’ managing arbitrator) steps of end-to-end transmission latency.

Figure 11 shows overall bandwidth consumption of VSM separated by roles: arbitra-

tors, aggregators, and gateway server. The numbers of bandwidth consumption indicate

average values from all roles, all steps in the simulation, except for the gateway server

which shows the total transmission size. Bandwidth consumed by peers and gateway

server are ignorable. Arbitrators in VSM are usually run on normal peers, and the figure

shows that their bandwidth usage is successfully controlled. Aggregators are chosen from

capable peers or powerful servers, so it could accommodate heavier loads by taking over

overloaded areas. Figure 12 shows the bandwidth comparison between VSM and tradi-

tional client-server model. In the figure, ”Server send/recv” is the bandwidth consumption

for the server in client-server, ”-NA” indicates measurements with no aggregation. The

result clearly shows that VSM, through distributing the management loads onto peers,

is more affordable than client-server model. Average transmission in our client-server

model uses 1.9 MB/s, but VSM uses only 12.7 KB/s (for arbitrators) and 50.0 KB/s (for

aggregators) when the system has 500 nodes.
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Figure 13 shows the comparison of bandwidth consumption when aggregation is en-

abled or not. While arbitrators come from normal peers, heavy loads may incur unpre-

dictable results. We can see that aggregation imposes a limit on bandwidth consumption

for the arbitrators.
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6 Conclusion

In this thesis, we propose Voronoi State Management (VSM), a Peer-to-Peer-based state

management scheme. By using a Voronoi diagram to divide the virtual world into regions,

peers share the responsibility to manage the virtual world, and the load of managing

states is spread out to all nodes who act as arbitrators of Voronoi regions. When the

positions of avatars are clustered, load balancing is achieved by aggregating arbitrators

to be taken over by aggregators, which are selected superpeers with better capabilities.

VSM integrates Peer-to-Peer and Client-Server architecture into a single scheme, and can

continually transform to one of them during the system operation. Simulation results

show that VSM can keep the properties of consistency, scalability, and load balancing.

Although VSM can support basic operation of VEs, there still are a few more ad-

vanced topics that need to be considered, e.g., AOI scalability, fault tolerance, and some

optimizations such as topology-aware routing/division. With an increasing number of

nodes in a fixed area, transmission loads could increase exponentially. Once aggregators

are overloaded, the system may crash or cause unrecoverable faults. Since exchanged

information always increases with the node size, the way grouping and aggregating ob-

ject/event/update is done now may give up some ’must know’ information. VSM currently

chooses aggregators in a random way, and may not select the most proper node for a given

situation. A better solution may be to choose aggregators based on client capability and

the physical topology, which may reduce message latency and achieve higher communica-

tion cost. To make VSM more applicable to real world scenarios, these problems need to

be solved in the future.
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