

淡江大學資訊工程學系碩士班

碩士論文

指導教授： 陳瑞發 博士

以同儕運算為基礎之可擴展式網路型態虛擬環境

Scalable Peer-to-Peer
Networked Virtual Environment

研究生： 胡舜元 撰

中華民國九 十 四 年一月

資淡

訊

工

程江

學

系

碩大

士

班學

碩

士

論

文

以

同

儕

運

算

為

基

礎

之

可

擴

展

式

網

路

型

態

虛

擬

環

境

研

究

生

：

胡

舜

元

撰

淡江大學資訊工程學系碩士班

碩士論文

指導教授： 陳瑞發 博士

以同儕運算為基礎之可擴展式網路型態虛擬環境

Scalable Peer-to-Peer

Networked Virtual Environment

研究生： 胡舜元 撰

中華民國九 十 四 年一月

淡江大學資訊工程學系碩士班

碩士論文

指導教授： 陳瑞發 博士

以同儕運算為基礎之可擴展式網路型態虛擬環境

Scalable Peer-to-Peer

Networked Virtual Environment

研究生： 胡舜元 撰

中華民國九 十 四 年一月

 i

論文名稱： 頁數：63

以同儕運算為基礎之可擴展式網路型態虛擬環境

校系(所)組別： 淡江大學 資訊工程學系碩士班 A 組

畢業時間及提要別： 九十三年度第一學期 碩士學位論文提要

研究生： 胡舜元 指導教授： 陳瑞發 博士

關鍵字： 網路虛擬環境、同儕運算、多人線上遊戲、Voronoi、

擴展性、有效互動空間管理、VON

論文提要內容：

「網路虛擬環境」(Networked Virtual Environment, 簡稱 NVE)

是整合 3D 圖學及電腦網路的新興領域。它使分散各地的使用

者，能在同一個虛擬空間中即時進行互動。從 80 年代的軍事模擬

到近年來熱門的「多人線上遊戲」(Massively Multiplayer Online

Game, 簡稱 MMOG) 皆為「網路虛擬環境」之實例。目前多數系

統採用「主從式架構」 (client-server) 為其通訊模式。但主從式架

構之總資源 (運算或頻寬資源) 通常有其上限，若要發展下一代，

可由百萬人同時使用的系統，則會面臨「擴展性」 (scalability) 方

面的問題。

本論文提出一種完全分散、以同儕運算 (peer-to-peer

computing) 及 Voronoi diagram 為基礎之虛擬網路 (Voronoi-based

Overlay Network, 簡稱 VON)，來解決「網路虛擬環境」之擴展性

問題。此方式較同類型架構簡易且有效率，並善用虛擬環境中，人

物互動範圍有限之特質。VON 可用來建構高度擴展性、低延遲、

且可容錯的網路虛擬環境。

 ii

Title of Thesis: Total pages: 63
Scalable Peer-to-Peer Networked Virtual Environment

Keywords:
Networked Virtual Environment (NVE), peer-to-peer (P2P),
massively multiplayer (MMP), Voronoi diagram, scalability,
interest management、VON

Name of Institute:
Department of Computer Science and Information Engineering
Tamkang University

Graduate date: 01/2005 Degree conferred: Master

Name of student: Shun-Yun Hu Advisor: Dr. Jui-Fa Chen
 胡舜元 陳瑞發 博士
Abstract:

Networked Virtual Environment (NVE) is an emerging discipline
that combines the fields of computer graphics and computer network to
allow many geographically dispersed users interact simultaneously in a
shared virtual environment. From the early military simulation to the
recently popular Massively Multiplayer (MMP) Online Games, we see
examples of NVE ever more integrated to aspects of our lives. Currently
client-server is the predominant architecture for NVE systems, however,
it faces inherent scalability problem as it usually has a limited total
amount of system resources (i.e. CPU and bandwidth), which makes it
unsuitable for constructing a NVE system sharable by millions of users.

We propose a fully-distributed peer-to-peer architecture to solve

the scalability problem of Networked Virtual Environment in a simple
and efficient manner. Our method exploits locality of user interest
inherent to such systems and is based on the mathematical construct
Voronoi diagram. The proposed Voronoi-based Overlay Network
(VON) allows scalable, responsive, fault-tolerant NVE be constructed
and deployed in an affordable way.

 iii

To 88<

 For sharing with me

the best time in my life

 iv

Table of Contents

List of Figures..vi

List of Tables... viii

1. Introduction..1

1.1 Thesis statement ...3
1.2 Motivation and goal ...3
1.3 World model and assumptions..3
1.4 The scalability problem ...4

1.4.1 Problem definition ..5
1.4.2 Previous approaches ...5
1.4.3 Scalability analysis ..7

1.5 A note on consistency ...8

2. Related Work..10

2.1 Networked Virtual Environment (NVE) systems..................................10
2.2 Peer-to-peer (P2P) systems..13

2.2.1 File-sharing systems..14
2.2.2 Distributed Hash Table (DHT) ..14

2.3 P2P-based NVE ..15
2.3.1 SimMud (University of Pennsylvania)15
2.3.2 Neighbor-list exchange (University of Tokyo)16
2.3.3 Solipsis (France Telecom R&D) ...17

3. Voronoi-based P2P NVE..18

3.1 Voronoi diagram...18
3.2 System design ...19

3.2.1 Overview ..19
3.2.2 JOIN procedure...21
3.2.3 MOVE procedure..22
3.2.4 LEAVE procedure ...24
3.2.5 Dynamic AOI adjustments ...25
3.2.6 The VON protocol ...26
3.2.7 Procedure enhancements..27

 v

3.3 Design analysis ...29
3.3.1 Criteria for NVE construction ...29
3.3.2 Complexity issues ..32
3.3.3 Comparisons with other systems ...32
3.3.4 Problems with Voronoi-based approach35

3.4 Implementation considerations...36
3.4.1 Delay counters ...36
3.4.2 Speed limit ...37

4. Simulation Results ...38

4.1 Simulation setup...38
4.1.1 Software architecture..38
4.1.2 Hardware environment and simulator39

4.2 Metrics definition ...40
4.2.1 Topology consistency...40
4.2.2 Drift distance ...40
4.2.3 Average neighbor size ...41

4.3 Results ...41
4.3.1 Scalability...41
4.3.2 Topology consistency...46
4.3.3 Reliability (recovery from inconsistency)47
4.3.4 Reliability (effect of packet loss) ..48

5. Conclusion ..52

5.1 A promising scalability solution..52
5.2 Potential applications...54
5.3 Future research ..55

5.3.1 Reliability measurements ...55
5.3.2 Overlay partition problem ...55
5.3.3 Distributed event consistency...55
5.3.4 Persistency maintenance ..58
5.3.5 P2P-based 3D streaming...59

List of References ...60

Published Paper at ACM SIGCOMM 2004 Workshop (Netgame2004)..................63

 vi

List of Figures

Figure 1: Concept of Area of Interest (AOI) ..5
Figure 2: Difficulty in choosing region size ..7
Figure 3: Scalability analysis ...7
Figure 4: NPSNET region division (source: [Macedonia 95-2]) ... 11
Figure 5: Server-cluster architecture (source: [Funkhouser 95]) ... 11
Figure 6: A peer-to-peer overlay network (source: [Keller 03]) ..13
Figure 7: Fixed-size regions in SimMud (source: [Knutsson 04]) ..15
Figure 8: Neighbor-list exchange scheme (source: [Kawahara 04])...16
Figure 9: Design of Solipsis (source: [Keller 03])..17
Figure 10: Potential discovery problems in Solipsis (source of (b): [Keller 03])17
Figure 11: Voronoi diagram...18
Figure 12: JOIN procedure..21
Figure 13: Pseudocode for the JOIN procedure...21
Figure 14: MOVE procedure...22
Figure 15: MOVE procedure (notification due to new enclosing neighbor)....................................22
Figure 16: Pseudocode for the MOVE procedure..23
Figure 17: LEAVE procedure..24
Figure 18: Pseudocode for the LEAVE procedure...24
Figure 19: Example of a crowding situation...25
Figure 20: Pseudocode for dynamic-AOI adjustments ...25
Figure 21: Dissimilar neighbor sets for acceptor and joiner...27
Figure 22: Topology inconsistency due to dynamic-AOI adjustment ..28
Figure 23: Worse-case scenario for connectable neighbors ..35
Figure 24: Potential incomplete neighbor discovery caused by fast-moving nodes37
Figure 25: A screenshot of the VON simulation (JAVA GUI)..39
Figure 26: Average transmission size per node per second ...42
Figure 27: Maximum transmission size per second among all nodes...42
Figure 28: Average neighbor size for basic and dynamic AOI models...43
Figure 29: Comparison of transmission size between VON and client-server44
Figure 30: Effect of node increase on average AOI-radius ...45
Figure 31: Topology consistency for basic and dynamic AOI models ..46
Figure 32: Average drift distance for basic and dynamic AOI models ..47
Figure 33: Change in topology consistency for 110 nodes (time-steps: 150-250).............................47
Figure 34: Average number of steps to recover from inconsistency ...48

 vii

Figure 35: Effect of loss rate on topology consistency (dynamic AOI model)49
Figure 36: Effect of loss rate on average drift distance ...49
Figure 37: Effect of loss rate on average neighbor size ...50
Figure 38: Effect of loss rate on average recovery steps..50

 viii

List of Tables

Table 1: Definition and notation for the pseudocode...20
Table 2: The VON data structure..26
Table 3: The VON protocol ..26
Table 4: Comparisons of P2P NVE systems ...32
Table 5: C++ classes and respective functions of the VON prototype..38
Table 6: Average and maximum neighbor size for basic and dynamic AOI models45
Table 7: Percentage breakdown of transmission size by message types (for 150 nodes)51

 ix

Acknowledgments

 I would first like to thank my advisor, Dr. Jui-Fa Chen (陳瑞發老師), for taking
me as his student and giving me responsive feedbacks to improve both the content and
presentation of this thesis. I am also grateful to Dr. Wei-Chuan Lin (林偉川老師), for
his feedbacks during group meetings and the suggestion to devise metrics to compare
various P2P approaches. Feedbacks and comments given by members of the Alpha
Lab, in particular, Hua-Hsen Bai (白華勝), were also much appreciated.

 This work originated with my collaboration with Guan-Ming Liao (廖冠名). We
had many exciting discussions and interesting brainstorm sessions while traveling
between Chia-Yi and Taipei, and during our regular weekend hiking. We discussed
and wrote the code for the early prototype together. Specifically, I would like to thank
Guan-Ming for the very robust and reliable implementation of the Voronoi algorithm.

 This research would not have attained its scale without the many people who
gave timely feedbacks and criticisms at various stages. These valuable comments and
suggestions had broaden and deepen my understanding of the problem: Joaquin Keller
and Simon Gwendal of France Telecom R&D (authors of Solipsis), Bart Whitebook
of butterfly.net, Jon Watte of There.com, Lili Qui of Microsoft Research, Crosbie
Fitch of Cyberspaceengineers.org, Chun-Wen Chen (陳俊文) of TKU WISE Lab and
the anonymous reviewers for my Netgame2004 workshop paper.

 I am thankful to my previous advisor, Prof. Wen-Bing Horng (洪文斌老師), for
giving me the freedom and secured environment to work on a research topic that I felt
greatly interested. I would also like to give special thanks to Prof. Jiung-yao Huang
(黃俊堯老師), for introducing the field of Networked Virtual Environment to me, and
for giving me the opportunity to participate in my first NVE-related project.

 Sincere thanks go to my father, Dr. Chin-Kun Hu (胡進錕老師), for his
consistent encouragement and support to me on embarking this research when
prospects of definite results were still uncertain (he believes that when given adequate
support, young people are capable to make important research contributions); and to
my mother, whose persistent efforts made possible my pursuit of graduate studies.

 This work was supported by Laboratory of Statistical and Computational Physics
(LSCP) of Institute of Physics, Academia Sinica, Taiwan.

 1

1. Introduction

Computer simulation of real-world environments is an important field that has
wide applications in military and corporate training, science, education, and
entertainment. As hardware and software technologies progress, we see ever more
detailed and realistic simulations. Advances in processing power, network bandwidth,
and 3D graphical acceleration have enabled a new class of sophisticated networked
simulations that is visually presented in 3D, and sharable by many users in real-time.
This emerging field is loosely called Networked Virtual Environment 1[Singhal 99]
(or NVE for short). Applications of NVE have evolved from military training
simulation in the 80’s to the recently booming massively multiplayer online games
(MMOG) in the 90’s.

One important challenge in NVE is to allow as many people as possible to

interact in the same environment, in a smooth and responsive manner. Allowing
thousands or even millions of people in the same virtual world creates potential for
new types of Internet applications and social phenomena. However, while we have
seen improvements in the scalability of NVE systems, so far there has not been a truly
massive and scalable NVE that exists on a global scale.

To create a NVE, a number of important issues must be considered, namely:

Consistency / Synchronization - For meaningful interactions to happen, each user’s
experiences in the virtual world must be more or less consistent. This includes
maintaining shared states and keeping events synchronized.

Responsiveness - NVEs are simulations of the real world. Responsiveness therefore is
important for immersion. However, requirements vary between applications (e.g.
latency less than 200ms is required for a fast-paced first-person computer game, yet up
to several seconds can be tolerated for a real-time strategy game [Knutsson 04]).

Security - Most NVEs allow people to engage competitively (e.g. combat or treasure
hunt). User authentication and fairness against cheating therefore are required. In fact,
this is often the most concerned aspect for commercial NVE developers.

1 Other names include Distributed Virtual Environment (or DVE) [Stytz 96], Collaborative Virtual
Environment (or CVE), Computer-Supported Collaborative Work (or CSCW). In this thesis we will use
the abbreviation NVE to describe all networked simulations of virtual worlds.

 2

Scalability – Scalability usually concerns with the number of simultaneous users in
NVE [Singhal 99]. It is important in two respects:

1. Content possibility. Certain game plays are only realizable when many
people can participate, such as community and social-oriented game play.

2. Service availability. Large-scale NVEs are similar to websites, where usage
may increase dramatically and unexpectedly. Systems will break if they are
not scalable.

Persistency - To allow sophisticated contents, certain data, such as user profile and
valuable virtual objects, must be persistently stored and accessed between user sessions.

Reliability / Fault-tolerance – User experience is negatively affected if a simulation
session suddenly breaks down due to server failure. Reliability is thus important to
make NVE a service with quality.

We consider scalability as the most important issue if we plan to build truly

massive worlds and applications, which millions of people can participate and enjoy.
Therefore, this thesis focuses on finding a feasible solution for the scalability problem
in NVE that may also be the foundation for solving other issues.

Existing approaches to improve scalability mainly rely on enhancing server

capacity in client-server architecture. However, client-server architecture has an
inherent upper limit in its available resource (i.e. processing and bandwidth capacity),
it is also expensive to deploy and maintained. On the other hand, peer-to-peer (P2P)
architecture has emerged in recent years as an alternative that promises scalability and
affordability. Since its introduction, it has become highly publicized by large-scale
distributed processing application such as SETI@Home [Korpela 01] (a University of
Berkeley project that allows people around the world to donate spare CPU time to
analyze astronomical data with a simple screen saver), file-sharing applications such
as Napster [Napster], Gnutella [Gnutella], FreeNet [Clarke 00], eDonkey [eDonkey],
and Voice-over-IP (VoIP) application such as Skype [Skype].

 We attempt to apply P2P architecture to NVE design, in hope that it may solve
the scalability problem in an efficient way. Our approach uses a mathematical
construct called Voronoi diagram [Guibas 85] for constructing a unique P2P network
that supports virtual environment applications. The proposed architecture is called
Voronoi-based Overlay Network (abbreviated as VON).

 3

1.1 Thesis statement

Scalable, responsive, and fault-tolerant Networked Virtual Environment can be
constructed with peer-to-peer architecture based on Voronoi diagram.

1.2 Motivation and goal

We believe that a massive, persistent 3D virtual environment which allows
millions of people to participate simultaneously may eventually happen on Internet as
a major communication medium. There are many technical, architectural issues that
need to be resolved before such a true cyberspace can materialize. Chief among the
issues is a scalable architecture that accommodates large number of simultaneous
users. We therefore choose to devise a feasible architecture for constructing scalable
virtual environments.

We note that peer-to-peer architecture holds better promise to achieve scalability

than client-server architecture. The goal for this thesis, therefore, is to devise a
suitable peer-to-peer architecture for constructing NVE that may be scalable to
millions of users.

1.3 World model and assumptions

In order to simplify the problem for this thesis, we assume that the virtual
environment is a 2D coordinate space with specific width and height. Events in the
world are modeled with discrete time-steps. Participants in the NVE consist of many
computers (referred to as nodes) scattered around the globe. All nodes are connected
to the Internet and may establish direct TCP connection (a peer-to-peer connection)
with each other. Each node is identified by a system-wide unique ID and a 2D
coordinate to indicate its current position. Nodes may change positions and move at a
certain velocity in any direction at each time-step.

To simplify our analysis, object states (or game states) in a complex virtual

environment such as MMOG (for example, player health points, virtual items, and
computer-controlled agents) are not considered. The only state update we consider is
position update that happens at regular intervals (for example, 5 – 10 times per
second). Network delay (or latency) is also not considered, and we assume that
packets are received and processed by the remote nodes immediately after they are
generated.

 4

We also assume that all computers can be trusted (e.g. there are no malicious
attempts at cheating or non-compliance to the proposed protocols). In other words,
among the criteria for constructing NVE, we currently do not consider event
consistency, security, and persistency issues.

1.4 The scalability problem

Scalability is a phenomenon observed in many natural and artificial systems. We
see systems that accommodate components (or nodes) in a wide range of numbers as
being “scalable”. There are two main characteristics in scalable systems:

 Joinability: components (or nodes) may be added to the system.
 Maintainability: system remains functional after various nodes enter or leave

the system.

Existing resources in any given system is usually finite, and are consumed at
end-point when a new node is added. For example, when we add new routers to
Internet, bandwidth of existing routers is consumed. A system is “joinable” only when
nodes that accept new nodes have enough spare resources. Likewise, maintainability
is sustained only when resource is not depleted after new nodes join. Two more
properties exist to counter the problem of resource depletion:

 Resource-growing: useful system resources (i.e. resources at the accepting
nodes) increase with the addition of new nodes

 Decentralized end-point resource consumption: addition of a node does not
consume some “centralized” resource.

Resource-growing is a general strategy found in almost all scalable systems

(reducing consumption works to similar effect). In the Internet example, although
adding routers consumes bandwidth, it also contributes new resource that can be used
to accommodate additional routers. Decentralized resource consumption, on the other
hand, is a weaker requirement. As long as resources are available at the accepting
nodes, a system can still be “joinable” and “maintainable” even if it is done in a
centralized fashion. For example, in a server-cluster, as long as server resources
(bandwidth and processing capability) can be increased, then scalability is maintained
[Butterfly 03]. However, such a design can be costly and complicated to maintain in
practice, and most truly scalable systems (such as Internet) exhibit decentralized
resource consumption.

 5

From the above discussion, we expect that to build a truly scalable NVE, one
that may accommodate more users by orders of magnitude than existing systems, we
need architectures that can grow its resource, and does not require centralized
resource when additional users join.

1.4.1 Problem definition
 The main problem that we try to address is: given some points (or nodes) moving
continuously on a 2D plane, each has a radius that defines its Area of Interest (or AOI,
see Figure 1). If all nodes must exchange messages with nodes within its AOI (called
AOI neighbors), how can it be done in a scalable and efficient manner?

Figure 1: Concept of Area of Interest (AOI)

Each dot represents a node in the virtual world, and the circle represents the Area of Interest
(AOI) of the center node.

1.4.2 Previous approaches

Scalability for NVE generally concerns with whether the system can
accommodate a large number of simultaneous users [Singhal 99]. Various approaches
have been taken, and they generally fall into either the increase resource or the reduce
consumption categories:

Increase Resource.

Using multiple servers to host multiple worlds or deploying server-cluster to
maintain a single world has become a popular approach, especially for commercial
NVEs [Butterfly 03] [Zona 03]. For example, commercial MMOGs are set up with
multiple servers for the same game, each serving a pre-determined maximum number
of users. When a server is full, it simply denies additional connections. Total number
of players can thus be very large. For example, a record of 160,000 concurrent users
was reported for the MMOG Lineage in 2002 in Taiwan [NCSoft 04]. However, users
between different servers may not interact, and some systems do not even share user
profiles (so users need to create separate accounts on each of the servers).
Server-cluster [Funkhouser 95], on the other hand, divides the virtual world into

 6

regions or zones, and supports what appears to users as a single coherent world. Since
server-cluster offers good scalability with tight, centralized controls for account and
security management, it has become the trend for building large-scale NVEs.
However, server-centered approach requires large investment in server-side
bandwidth, hardware, and maintenance, which creates significant entry barriers for
potential NVE developers.

Decrease Consumption.

The central theme to this approach is interest management [Morse 00]. While
other techniques to economize bandwidth exist, such as packet compression or
aggregation [Singhal 96], we consider interest management more relevant. Messages
are generated by user actions (for example, moving to a particular location) and are
communicated among nodes to maintain consistency. However, if messages are sent
to all users in the system, the amount of transmission and processing grows at O(n2),
which is clearly not scalable. Real-world observation tells us that each individual only
has a limited visibility or “sphere of interaction”. In other words, our interest is
localized [Morse 00]. Interest management therefore deals with relevant information
filtering, to reduce network resource consumption while maintaining adequate
interactivity. Early NVEs did not have interest management, and were set up by hosts
broadcasting messages in the same LAN [Miller 95]. To provide interest management,
later systems adopt the client-server model, where clients send messages to the server,
which acts as interest manager and sends back filtered messages (i.e. the messages
that are necessary to maintain synchronization for the client). Interest management
can be based on various criteria. It can be distance-based (by geography), class-based
(by object or user attributes), or some combination of both [Morse 00]. The concept of
AOI is thus central in distance-based filtering. Only messages generated within AOI
are relevant to the user, and AOI-radius becomes the filtering criterion.

A common technique in interest management is to divide the world into various
regions. Each user only receives messages (position update or interaction message)
from relevant regions. This can be done by server-side message filtering, or via
network support such as multicast [Macedonia 95-1]. However, region size can be
difficult to determine (see Figure 2). If it is larger than AOI, irrelevant messages are
received; while if it is smaller than AOI, maintaining regions could be inefficient (e.g.
subscribing to too many multicast address). Ideally, region size and shape would be
dynamically adjustable to coincide with a user’s AOI. The real challenge then is to
create individualized region that moves with the user.

 7

(a) (b)

Figure 2: Difficulty in choosing region size

(a) AOI is smaller than region. (b) AOI is larger than region.

1.4.3 Scalability analysis
We may also look at the scalability problem from a resource-limitation

perspective. Two main types of resource in NVE systems are the processing (CPU)
and network (bandwidth) resource. As bandwidth is usually the limiting factor to
NVE scalability in real systems, we will focus our discussions on network resource.

In any type of expandable system (centralized or distributed), there are always

some limiting components that pose as the bottleneck. If resource runs out at this
component, then the system will cease to be scalable. For example, in a client-server
system, the server is usually the limiting component. For distributed system such as
P2P, the limiting component is the first node that exhausts its bandwidth capacity.

 We may use graphs to visualize scalable and non-scalable systems. Resource
consumed at the limiting component usually grows with the size of the system. If the
consumption increases without limitation, at some point it will exceed the resource
limit, making the component unable to accommodate more nodes (see Figure 3a). On
the other hand, if consumption growth may slow down and level off before reaching
the resource limit, then the system can continue to scale up (see Figure 3b).

(a) (b)

Figure 3: Scalability analysis
X-axis denotes the number of nodes; y-axis denotes resource consumption at the limiting
component; top horizontal line indicates the resource limit.
(a) Non-scalable system. (b) Scalable system.

 8

1.5 A note on consistency

The concept of consistency is defined differently in different fields of computer
science. Both NVE and P2P assign different meanings to the term “consistency”. It is
therefore important to first define what we mean by consistent in the context of
P2P-based NVE.

 Consistency in NVE generally refers to the idea of event or state synchronization
(or simply, event consistency): whether various participants of the simulation see the
same events happening, and whether the events occur in the same order. Zhou et al.
[Zhou 04] classifies NVE event consistency into two main groups:

- Casual order consistency: Events must happen in the same order as they
occur, as humans have deeply-rooted concept about the logical order for
event occurrence. An example is that we would expect to see canon-firing
before an explosion. If we see explosion (the effect) happens before the
firing (the cause) then we would feel something “weird” is going on.

- Time-space consistency: In an NVE system, messages are sent to notify for

position updates. However, due to network latency and clock asynchrony (i.e.
unsynchronized clocks) on various computers, it is possible for hosts to
receive updates at different times and interpret the order of event occurrence
differently (thus also display the entity positions differently). Inconsistencies
therefore could occur for entity positions at a given logical time.

Note that casual order consistency and time-space consistency are not necessarily

related to each other (i.e. it is possible to preserve casual order consistency but violate
time-space consistency). This problem is particularly evident when predications are
used in place of missing update messages.

On the other hand, the concept of consistency in P2P generally refers to what
may be called topology consistency, which is whether each node in the P2P system
holds consistent views of the parts of the network they share (note that each node only
maintains a local view of the complete topology). Topology consistency is a common
issue for all P2P applications, which also include P2P file-sharing and distributed
hash table (DHT, described later in section 2.2.2) applications. On the other hand,
event consistency is particular to NVE applications.

 9

 Consistency in NVE and in P2P, therefore, refers to different concepts, and one
has to be careful to specify which consistency is in discussion, in the context of a
P2P-based NVE. It should be noted that in P2P NVE, the two types of consistency are
related in the sense that topology consistency is a prerequisite for event consistency.
Also, if entity position is treated as a type of state update, then topology consistency
can be seen as a subset of event consistency.

 We will distinguish between the two types of consistencies by referring to them
as event consistency (in the NVE sense of synchronization) and topology consistency
(in the P2P sense). This thesis focuses on topology consistency, event consistency is
not currently considered.

 10

2. Related Work

As our study attempts to solve the scalability problem in NVE with P2P

architecture, we will now survey existing NVE systems, P2P systems, and some of the
recently proposed P2P NVE systems. We will focus on their unique characteristics
and how scalability is addressed in these systems.

2.1 Networked Virtual Environment (NVE) systems

SIMNET
 SIMNET (simulator networking) [Miller 95] was the original large-scale
networked virtual environment, developed jointly by the U.S. Army and Defense
Advanced Research Project Agency (DARPA) between 1983 and 1990. The goal was
to create a large number of low-cost simulators suitable for combat training. It was set
up in a LAN environment, with each node broadcasting event updates to all other
nodes. Scalability of 850 simulated objects was achieved in one exercise [Singhal 99].
However, LAN bandwidth would be saturated at a rate of O(n2), making scalability
expensive and costly to maintain.

NPSNET
 NPSNET [Zyda 92, Macedonia 95-2] is the long-standing academic NVE project
at U.S. Navel Postgraduate School (NPS) that began in 1987. Like SIMNET, its goal
is also to develop virtual environment technologies suitable for military purposes. The
project has a comprehensive scope that addresses many NVE-related research topics
such as scalability, extensibility, interoperability, visualizations, computer-controlled
agents, and human-computer interactions.

The main contribution from the NPSNET project on scalability is the proposal to
use multicast as a filtering infrastructure for large-scale NVE [Macedonia 95-1]. The
idea is to partition the virtual environment into many fixed-size regions, each assigned
a unique multicast address. As entities (nodes) move inside the environment, they
would subscribe to various multicast addresses that correspond to regions within the
node’s AOI. This way the amount of message received will be reduced significantly to
those within the current area of interest (see Figure 4).

 11

Figure 4: NPSNET region division (source: [Macedonia 95-2])

Each hexagon cell represents a region associated with a multicast address. Entities subscribe to
all the cells that are within its Area of Interest (AOI, indicated by the white cells).

The main problem with the multicast approach is that it has not been widely

deployed on Internet, and with fixed-size region, there is always the problem of
determining the appropriate region size (refer back to Figure 2 in section 1.4.2). If too
many nodes are present in the same region, then crowding could cripple the system
(see section 3.2.5).

RING
 To address the resource limitation on a single server, Funkhouser proposed RING
in 1995 [Funkhouser 95]. RING was the first attempt in using multiple servers to host
a single NVE, laying the foundation for future variants of the server-cluster approach
(see Figure 5). With multiple servers, each manages a pre-specified partition (a region)
of the virtual environment, computational and bandwidth load are effectively spread
out across the servers (assuming users are distributed evenly in the virtual
environment). To facilitate user transfer when they move across different regions,
each server would maintain contacts with one another over a high-speed LAN.

Figure 5: Server-cluster architecture (source: [Funkhouser 95])

 12

Server-cluster has become the practical solution to address scalability to date.
However, with high system complexity and maintenance cost (a large amount of
bandwidth is required at the server-side to support many users, which could be costly),
only organizations with sufficient budget and resource could afford it.

MiMaze
 To address the inherent limitation of server-side network resource, Diot et al.
proposed a fully-distributed architecture on multicast Internet (i.e. the MBone
infrastructure) to improve scalability and responsiveness of NVE systems [Diot 99].
The main contribution of MiMaze, however, was not a demonstration of scalability,
but the experimental studies to maintain event consistency in a distributed
environment by using bucket synchronization (see section 5.3.3). Although scalability
was not focused in the study (MiMaze only uses a single multicast address, with
around 25 nodes in the experiment), bucket synchronization may be useful and
applicable to distributed system such as P2P.

Massively Multiplayer Online Games (MMOG)
 In mid-1990s, commercial companies began to launch games that allow
thousands of players to participate in the same virtual universes. Ultima Online [UO],
Everquest [EQ], Asheron's Call [AC], and Lineage [Lineage] are a few of the most
well-known online games. Current generation MMOG adopts the server-cluster
architecture, where each server manages one region or zone. When users move
between zones, user profile is transferred from one server to another, causing a
temporary delay. Asheron’s Call was the first MMOG to provide zoneless transition
where the user would not experience delay when transferring to a different zone. It is
likely achieved by pre-fetching user data as the user approaches the zone border.

 Each server in a cluster can accommodate between a few hundreds to a few
thousand users, allowing the total number of users in a single game to exceed 10,000.
As MMOG are for commercial purpose, security is of strong concern to ensure
fairness. Users usually do not have control over the calculations of game states.
Instead, they send in event updates to the server, where the consequence of action
commands are calculated and validated. The results are then sent to notify other users
who are affected. As client machines may be malicious and cannot be trusted, all
player data are stored at server-side databases. Thus, besides message filtering, the
server also validates actions, detects collisions, and manages persistent data.

 13

2.2 Peer-to-peer (P2P) systems

Peer-to-peer systems can be described as “distributed systems without any

centralized control or hierarchical organization, in which each node runs software
with equivalent functionality” [Stoica 03]. Many P2P systems have emerged in recent
years, which include distributed processing, distributed file sharing, distributed hash
table (DHT), among others. Compared to client-server architecture, P2P offers certain
desirable traits:

 Scalability: as nodes join the system, they also bring in resource instead of

simply consume existing resource. The distributed nature also may prevent
any one node from overloading and becoming the bottleneck of scalability.

 Affordability: most P2P systems can be constructed using commodity

hardware without requiring expensive servers or server-side bandwidth.

 Fault-tolerance: as there is no centralized authority in the system, true P2P
systems do not have the single-point of failure problem in client-server
architecture. The system may still function even if some nodes fail.

Peer-to-peer systems are constructed by connecting various computers (nodes) in

a mesh-like fashion (see Figure 6) to form a virtual network on top of the physical
Internet. The term overlay network is thus used to describe peer-to-peer systems (we
will use the term peer-to-peer and overlay network interchangeably in this thesis).

Figure 6: A peer-to-peer overlay network (source: [Keller 03])

 We will next briefly describe two types of the popular P2P systems: file-sharing
and Distributed Hash Table (DHT).

 14

2.2.1 File-sharing systems

Napster

Napster [Napster] was the first widely used P2P file-sharing network that allows
the sharing of music files. Although file-transfer is done between peer computers,
file-discovery requires querying a centralized server. The server maintains a directory
of the locations of each file currently shared on the P2P network. As centralized
servers are used, Napster is not fully-distributed and thus faces some of the same
problems as client-server: inherent upper limit to server-side resource (e.g. limited
scalability) and a single-point of failure.

Gnutella
 Gnutella [Gnutella] attempts to address Napster’s single-point of failure problem
by adopting a fully-distributed architecture. Each node in the Gnutella network
maintains a contact list of other nodes. When users try to find a particular file, the
search request is broadcasted (on the overlay network) to its list of contacts. If the file
is not found, the contacts would forward the request to their own list of contact nodes.
The search request thus spreads through the network in a ripple-like fashion. To avoid
over-flooding the network, each request is attached a time-to-live (TTL) value, and is
dropped when the value reaches 0 (e.g. the search is being given up).

 Although Gnutella avoids having a single-point of failure, its broadcasting nature
is time-consuming and wasteful. It trades efficiency with fault-tolerance capability,
yet still does not pose to be truly scalable.

2.2.2 Distributed Hash Table (DHT)

To address the non-scalable nature of existing file-sharing P2P, a number of
academic P2P overlays have been proposed in recent years: CAN [Ratnasamy 01],
Chord [Stoica 03], Pastry [Rowstron 01], Tapestry [Zhao 04] and Hypercast [Liebeherr
02], to name a few. These overlay networks mainly deal with setting up a distributed
hash table (DHT), which provides the function of mapping any given key to a node,
and allows for efficient, robust content-lookup (which are required for file-sharing).
However, virtual environments have different requirements, and DHT would not
address effectively the problems in NVE. While DHT may be efficient at querying the
location of a piece of data, it does not support frequent message exchange (or updates)
which is necessary to provide interactivity. While it is possible to build NVE on top of
DHT, as proposed by Knutsson et al. [Knutsson 04], it would incur certain overhead
and latency (to be discussed next in section 2.3.1).

 15

2.3 P2P-based NVE

 Common questions to all P2P networks are: correct topology maintenance and
efficient content retrieval. Since a single node has no knowledge of global topology or
content location [Kung 01], these two issues are the central challenges to any P2P
design. For topology maintenance, two aspects must be considered: whether it is
fully-connected (described by Keller and Simon as the Global Connectivity property
[Keller 03]) and whether all nodes have a consistent view of the topology (i.e. whether
the local topology views of all nodes agree with each other and may merge into a
globally consistent topology. A similar concept was described by Keller and Simon as
Local Awareness [Keller 03], which indicates whether a node is aware of all its
AOI-neighbors). Unlike file-sharing P2P, where the desired file may be located on any
node according to user preference, in P2P NVE the desired content is more specific ––
messages generated by other users within the AOI. If only such messages are received,
then message flow is managed optimally. The “content discovery problem” in P2P
systems, therefore, translates naturally to a neighbor discovery problem in P2P NVE.
Efforts to apply P2P on NVE began around 2002, with publications appearing in 2004.
Below we describe three of the main proposals to the neighbor discovery problem.

2.3.1 SimMud (University of Pennsylvania)

Knutsson et al. describe P2P support for Massively Multiplayer Games by using
Pastry and Scribe, a P2P overlay and its associated simulated multicast [Knutsson 04].
The virtual world is divided into regions of fixed-size (see Figure 7). Each region is
managed by a promoted super-node called coordinator, which serves as the root of a
multicast tree. Users inside the same region subscribe to the root node to receive
updates from other users, so neighbors are discovered via the coordinator. Coordinators
maintain links with each other, facilitating user transition to other regions

Figure 7: Fixed-size regions in SimMud (source: [Knutsson 04])

 16

However, since fixed region size does not reflect user AOI, users cannot see across
regions. If users decide to listen to more regions, as suggested in the paper, irrelevant
messages beyond AOI will be received. If too many users crowd inside the same region,
then the coordinator may be overloaded. A more serious problem is the latency penalty
incurred by using the P2P overlay. As the overlay is not designed around the concept of
AOI, message updates may need to be relayed by other nodes (less than 6 hops in most
cases, but exceed 50 in other cases – a delay up to several seconds. Note that this is
“virtual hops” on the P2P overlay, so it translates to more hops at the physical level). In
short, the architecture does not fully utilize the true power of P2P –– direct connections.

2.3.2 Neighbor-list exchange (University of Tokyo)

Kawahara et al. describes a fully-distributed scheme where each user keeps track
of a fixed number of nearest neighbors [Kawahara 04]. Nodes constantly exchange
neighbor list with their own neighbors (see Figure 8). After sorting through the list by
proximity, each node may learn of new nodes and update its connection relationship (to
reflect current topology).

Figure 8: Neighbor-list exchange scheme (source: [Kawahara 04])

Neighbors (A1, A2, A3, A4) exchange neighbor list with the center node.

In this approach, direct links are maintained between neighbors, so transmission

latency is minimized (e.g. messages are exchanged directly, not relayed through
intermediate nodes like SimMud). However, constant exchange of neighbor list incurs
network overhead (if 10 nearest neighbors are kept, one exchange requires receiving
updates of 10x10 nodes). The more serious problem is keeping the topology
fully-connected. Since only a finite number of nearest neighbors are maintained, groups
of users may lose contact to each other if separated by a large distance. The underlying
overlay can thus separate into isolated parts (an overlay partition) [Kawahara 04].

 17

2.3.3 Solipsis (France Telecom R&D)
Solipsis [Keller 02, Keller 03] is also a fully-distributed system, where each node

attempts to link with all the nodes within its AOI. Neighboring nodes serve as the
“watchmen” for any approaching foreign nodes. Neighbor discovery is done by
notification from known neighbors.

Figure 9: Design of Solipsis (source: [Keller 03])

Solipsis requires that all nodes are within a convex hull formed by neighboring nodes. In the figure
above, (a) matches the requirement while (b) violates the requirement.

Like the neighbor-list exchange scheme, Solipsis also maintains direct links among
neighbors (latency is thus minimized). Specifically, it requires that each node be inside
a convex hull formed by its neighbors in 2D plane (see Figure 9a). This way the
topology is guaranteed to be fully connected (i.e. Global Connectivity is kept). However,
inconsistent topology may happen during normal operation occasionally, since an
incoming node may be unknown to directly connected-neighbors, proper neighbor
discovery is thus not guaranteed (i.e. Local Awareness is not kept, see Figure 10a). In
some other cases, proper neighbor discovery could be slow as it may require a few
queries (see Figure 10b).

(a) (b)

Figure 10: Potential discovery problems in Solipsis (source of (b): [Keller 03])

(a) Lines indicate connections. Square node is not discovered as it moves from position 1 to 2.
Topology becomes inconsistent even though it is fully-connected and compiles to Solipsis’ design.
(b) It may take node e a few queries before properly discovering node ei in the north.

 18

3. Voronoi-based P2P NVE

We now describe the design and analysis of our P2P approach, which is based on a

well-studied mathematical construct Voronoi diagram [Guibas 85, Aurenhammer 91].
We first explain what a Voronoi diagram is, then explain the design of our proposed
architecture – Voronoi-based Overlay Network (VON). An analysis of VON’s design is
then provided, including comparisons with other P2P NVE systems and some problems
in the current design. We conclude this part with some implementation considerations.

3.1 Voronoi diagram

Given n points on a plane, (each point called a site), a Voronoi diagram is
constructed by partitioning the plane into n non-overlapping regions that contain
exactly one site in each region. A region contains all the points closest to the region’s
site than to any other site (see Figure 11a). The entire plane is therefore divided into
arbitrary sizes in a deterministic way. Voronoi diagram can be used to find the k-nearest
neighbors of a specific site. By using Voronoi, we can identify enclosing and boundary
neighbors for a given site. Enclosing neighbors are defined as sites whose regions share
a common edge with the given site’s own region. Boundary neighbors are defined as
the sites whose regions overlap with the site’s AOI boundary (see Figure 11b). Note that
an enclosing neighbor may also be a boundary neighbor. These properties will help to
solve the neighbor discovery problem described earlier.

(a) (b)

Figure 11: Voronoi diagram

(a) The dots indicate sites, and lines define boundaries for regions. (b) Squares (▓) represent
enclosing neighbors; triangles (▲) represent boundary neighbors; stars (★) are both enclosing and
boundary neighbors; circle (●) represents a regular AOI-neighbor.

 19

There exist a number of algorithms to construct Voronoi diagrams [Gowda 83,
Dwyer 86, Fortune 86]. Most can construct a Voronoi diagram with O(n log n) time
complexity given a number of sites. However, for our purpose, the specific
construction method is not the focus of this thesis, and we assume that stable
algorithms to construct Voronoi diagram exist and can be readily used.

3.2 System design

3.2.1 Overview

The basic idea of our approach is to let each node construct and maintain a Voronoi
diagram, based on the spatial coordinates of neighbors within the node’s AOI. Each
node keeps P2P connections with all neighbors that constitute the Voronoi sites.
Connections are based on spatial relationship in the NVE (not physical network
proximity). Each node must minimally maintain all its enclosing neighbors to ensure
that topology is fully-connected. In our basic model, we assume that all AOIs are of the
same radius (a dynamic-AOI variation is described later in section 3.2.5), and are
determined in an application-specific manner by the designer. Although a node only
knows a limited number of neighbors, it can learn of other new neighbors with the help
of its boundary neighbors. Each peer serves as the “watchman” for one another in
discovering approaching neighbors.

When the node moves, position updates are sent to all neighbors maintained in the
Voronoi. If the receiver of the update is a boundary neighbor (as determined by the
sender), an overlap-check is performed. The receiver checks if the mover, with its new
AOI, would enter into any of its enclosing neighbors’ Voronoi regions. The receiver
only notifies the mover if a new overlap occurs (i.e. previously non-overlapped region
becomes overlapped). Receivers may also notify the mover if the mover has any new
enclosing neighbors, to ensure that enclosing neighbors are maintained by each node at
all times. The moving node may thus be aware of potentially visible neighbors outside
its AOI with minimal network overhead (because no query messages are involved in
neighbor discovery, and messages are exchanged only when necessary. In a way, the
queries are embedded in the position updates). In case of a node leave or failure, its
neighbors simply update their Voronoi after detection (through a loss of TCP connection
or inactivity timeout). If the leaving node is a boundary neighbor, replacements are
notified by the still-connected boundary neighbors during the next position update.

 20

We will next describe the procedures for node joining, moving and leaving in
VON. The emphasis is to maintain P2P topology consistency in a message-efficient
manner.

Before we show the actual procedures, Table 1 describes the notation and
definition for the pseudocode that describes the implementation details. Pseudocode for
the JOIN, MOVE, and LEAVE procedures are given in Figure 13, Figure 16, and
Figure 18, after the textual descriptions for each procedure.

Table 1: Definition and notation for the pseudocode

Variables for node n Description
id node n’s unique ID
aoi node n’s AOI-radius
pos node n’s coordinates (x and y)
neighbors a list of the neighbors that node n maintains

Basic functions for n Description Returns
contains(pos) if pos is within n’s Voronoi region true/false
overlaps(node) if n’s AOI overlaps with node’s Voronoi region true/false
closest(pos) the neighbor with shortest distance to pos node_id
is_EN(id) if node id is an enclosing neighbor of n true/false
is_BN(id) if node id is a boundary neighbor of n true/false
knows(id) if node id is a currently known neighbor of n true/false
insert(node) store node’s id, aoi, and pos to neighbors none
delete(id) remove the node id from neighbors none
update(node) updates a node’s aoi and pos none

Note 1: in the following pseudocode, if node n is sent as a parameter, only its id,
aoi, pos are sent, its neighbors is never sent in order to conserve bandwidth.

Note 2: the basic functions insert, delete, and update maintain the Voronoi diagram
for a particular node n.

 21

3.2.2 JOIN procedure
1. Joining node contacts the gateway server for a unique ID.

2. Joining node sends a join request with its own coordinates to any existing node
(which can be the gateway server).

3. Join request is forwarded to the acceptor region (e.g. the region that contains the
joiner’s coordinates) via neighboring nodes with greedy forward (see Figure 12a).

4. Acceptor node sends back a complete list of its own neighbors.

5. Joining node contacts each neighbor on the list.

6. Joining node builds up a new Voronoi while the contacted nodes update their
Voronoi to accommodate the joining node (see Figure 12b).

(a) (b)

Figure 12: JOIN procedure

(a) Forward of join request. Circle is gateway server. Arrow indicates the acceptor node. (b) Triangle
(▲) is the new node, shaded regions are neighbors affected by join. Note that the effect is localized.

// enters p2p overlay given an initial gateway

n.join(gateway)

id = gateway.assign_id();

gateway.query(n);

// send my list of neighbors if I am the acceptor
// otherwise forward the query request
n.query(node)

if(contains(node.pos))

 node.notify(neighbors);

 else

 n' = closest(node.pos);

 n'.query(node);

// unique-ID assignment (gateway only)

n.assign_id()

id_counter++;

return id_counter;

// notify a node of a list of nodes it should know

n.notify(node_list)

for each node in node_list

if(contains(node.pos))

insert(node);

node.insert(n);

Figure 13: Pseudocode for the JOIN procedure

 22

3.2.3 MOVE procedure
1. Moving node sends position coordinates to all neighbors (i.e. boundary, enclosing,

and AOI-neighbors). Messages to boundary neighbors are specifically marked.

2. Boundary neighbor checks if the moving node’s new AOI overlaps with any of its
enclosing-neighbors’ Voronoi regions (see Figure 14a) or if the moving node comes
to contact with any new enclosing neighbor (see Figure 15). If so then it sends a
notification.

3. If a new neighbor is found, the moving node connects to it.

4. Moving node disconnects any boundary neighbors whose Voronoi region no longer
overlaps with its AOI (see Figure 14b).

(a) (b)

Figure 14: MOVE procedure

(a) Triangle (▲) indicates the intended new position. Squares (▓) are new neighbors about to be
discovered. Stars (★) are the boundary neighbors (b) Crosses (╳) are the neighbors no longer
overlap with AOI, therefore are disconnected.

(a) (b)

Figure 15: MOVE procedure (notification due to new enclosing neighbor)

(a) The moving node’s AOI does not overlap with any of its enclosing neighbors, yet connections
are still maintained due to protocol requirement. (b) The moving node is notified of a new
enclosing neighbor (the shaded region) by its existing enclosing neighbors. Note that its AOI does
not overlap with the new neighbor.

 23

// move to a new position (specified by new_pos)

n.move(new_pos)

pos = new_pos;

adjust_aoi(); // explained later in section 3.2.5

remove_nonoverlapped();

for each node in neighbors

if(is_BN(node))

 node.has_moved(n, true);

else

node.has_moved(n, false);

// remove neighbors that no longer overlaps with n’s AOI

n.remove_nonoverlapped()

for each node in neighbors

 if(overlaps(node) is false)

remove(node);

node.remove(n);

// tell a neighbor of my new position, this neighbor will check for neighbor discovery

n.has_moved(node, notify_flag)

update(node);

if(notify_flag is true)

for each enclosing_neighbor in neighbors

 if((node.overlaps(enclosing_neighbor) or node.is_EN(enclosing_neighbor))

and node.knows(enclosing_neighbor) is false

node.notify(enclosing_neighbor);

Figure 16: Pseudocode for the MOVE procedure

 24

3.2.4 LEAVE procedure
1. Leaving node simply disconnects (there is no distinction between proper and

abnormal departures from the overlay network).

2. Neighboring nodes affected by the disconnection update their Voronoi. If a
boundary neighbor leaves, replacements may be learned via still-connected
boundary neighbors (see Figure 17).

(a) (b)

Figure 17: LEAVE procedure

(a) Before node leave, cross (╳) is the leaving node. (b) After node leave, triangles (▲) are the new
boundary neighbors discovered with help of still-connected boundary neighbors (Squares ▓).

// let all my neighbors update their Voronoi by removing me
n.leave()

for each node in neighbors

node.remove(n);

Figure 18: Pseudocode for the LEAVE procedure

 25

3.2.5 Dynamic AOI adjustments
In real-world applications, objects or events of interest may cause certain parts of

the map to have a high density of users (i.e. a crowding situation, see Figure 19. It is
similar to the flash crowd effect in websites). The fixed-size radius of AOI in our basic
model will not accommodate such situation, and nodes may become overwhelmed by
connections or messages as the density of neighbors increase within their AOI.

Figure 19: Example of a crowding situation

 To address this problem, we propose an enhancement to the basic algorithm by
adjusting AOI-radius dynamically in real-time. We specify for each node, a maximum
number of allowable connections, then adjust the AOI-radius to ensure that this limit
does not exceed by the actual number of connections. The adjustment conditions are:

 AOI-radius decrease condition
- Number of currently-connected neighbors exceeds the maximum number of

allowable neighbors
 AOI-radius increase condition

- Number of currently-connected neighbor does not exceed maximum number
of allowable neighbors.

- Current AOI-radius is less than the preferred (e.g. the initial) radius.

These two simple rules will help to maintain a balance on the connection size for
each node in the P2P network (see Figure 20 for the pseudocode).

n.adjust_aoi()

 if(sizeof(neighbors) greater than connection_limit)

 decrease aoi;

 else if(aoi less than preferred_aoi_radius)

increase aoi;
Figure 20: Pseudocode for dynamic-AOI adjustments

 26

3.2.6 The VON protocol
The above procedures are realized as a set of protocols. The basic data structure

is shown in Table 2. Table 3 describes the message commands and their functions.

Table 2: The VON data structure
(Number inside bracket indicates the number of bytes used)

Data type Components Purpose
ID Unique-id (4) To identify each node uniquely

POS x (4), y (4) To identify a position in virtual environment

ADDR IP-address (4), port (4) The address and listen port of a node

AOI AOI-radius (4) The AOI-radius of a particular node

Table 3: The VON protocol

(Parameters inside the square bracket indicate that they are sent as a list.)

Command Parameters Return Function
ID ID Unique ID assigned by gateway server

GREET ID Allow a connection-accepting node to
understand the identity of a remote node

QUERY ID

POS

ADDR

NODE

(acceptor’s

own neighbors)

Sent by the joining node to indicate its
initial position, in order to find the
acceptor region. This command will be
forwarded if the Voronoi region of the
processing node does not contain the
entry point. The address is used by the
acceptor to contact the joining node.

HELLO POS

AOI

ADDR

HELLO Handshake by two nodes that try to
establish connections with each other.
(sent after GREET)

EN [ID] NODE

(missing

neighbors)

A list of unique-IDs of enclosing
neighbors. Used after HELLO to check
for missing neighbors (see section 3.2.7)

MOVE POS

AOI

 Notifying connected-neighbor of the
current position and AOI-radius

MOVE_B

MOVE_BD

POS

AOI

NODE

(new

neighbors)

Same as MOVE, but sent to boundary
neighbors, which will then check for
potential neighbor discovery. See section
3.2.7 for a description of MOVE_BD.

NODE [ID

POS

ADDR]

 Information about a particular node, for
connection-establishing purpose.

 27

3.2.7 Procedure enhancements
There are some situations where the above procedures do not work as correctly

as expected, therefore some enhancements to the basic procedures are required. We
discuss some of the enhancements below.

JOIN procedure enhancement

A fine-point in the JOIN procedure deserves some emphasis. The neighbor sets
of the acceptor and the joining node (the joiner) may not be exactly the same in some
cases (see Figure 21), and will cause incomplete neighbor discovery for the joiner.

(a) (b)

Figure 21: Dissimilar neighbor sets for acceptor and joiner

(a) Node A does not appear on the neighbor list for the acceptor node (circle). (b) However, Node
A is a neighbor for the joining node (triangle). The neighbor list returned by the acceptor is not
complete for the joining node.

To remedy this situation, we add an additional procedure when nodes initiate
connections to newly discovered neighbors. It will send a list of the enclosing
neighbors of the node to be contacted, so that the contacted node may check for any
missing nodes from its enclosing neighbor set. This is presented as the EN command
in the VON protocol (see Table 3 in section 3.2.6). This additional procedure will add
some overhead to the VON protocol. However, the frequency is limited to only when
establishing a new connection. Also, it will provide the additional benefit of fixing
inconsistent local views of the topology among neighbors. If we assume each node
knows its enclosing neighbors correctly, then this “fixing mechanism” will provide
robustness to topology maintenance.

 28

Dynamic AOI adjustments enhancement
When a node decides to shrink its AOI-radius, it may disconnect certain nodes

that still consider the node as their AOI neighbors. This will cause inconsistencies in
those other nodes with larger AOI-radii (see Figure 22)

Figure 22: Topology inconsistency due to dynamic-AOI adjustment

The square node shrinks its AOI-radius (from the thinner to the thicker AOI) and disconnects the
triangle node. The triangle node then has an incomplete/incorrect view of the topology.

To avoid inconsistent views of the topology, one possible solution is for the

affected (i.e. disconnected) nodes to immediately shrink their AOI-radii, so that the
initial AOI-shrinking node (i.e. disconnecting node) falls outside the AOI of the
affected nodes. Topology consistency of the nodes being disconnected therefore will
not be adversely affected.

We introduce the MOVE_BD message to the VON protocol as an enhancement
to the MOVE_B message (which is used to notify boundary neighbors of position
updates, see section 3.2.6). MOVE_BD is sent to those boundary neighbors that will
be disconnected in the next time-step. Receivers of the message can therefore
anticipate a possible future disconnection and shrink their AOI-radii preventively.

This remedy, however, will lower the number of visible nodes of the affected

node when it has not yet reached its connection limit. It may or may not be desirable
depending on the application type. A better solution is the topic for future research.

 29

3.3 Design analysis

We will now analyze how VON matches the six criteria for NVE outlined earlier
(see Introduction and section 1.5), in order to emphasize its specific characteristics
and compare against other approaches. Currently identified problems with the
Voronoi-based approach are then discussed.

3.3.1 Criteria for NVE construction

Topology consistency
 We will discuss topology consistency in two aspects: whether the topology is
fully-connected (e.g. Global Connectivity is kept) and whether each node shares
consistent views of the world (e.g. Local Awareness is achieved properly).

Global Connectivity is kept as long as each node properly maintains its enclosing
neighbor set. An intuitive explanation is that enclosing neighbors completely cover a
node, therefore, if the set is kept, a node will always maintain links with at least some
nodes in the P2P overlay. In fact, overlay partition itself indicates that enclosing
neighbors are not kept properly.

Consistent views (or proper Local Awareness) are maintained as long as neighbor

discovery is complete. This will happen if the procedures for JOIN/MOVE/LEAVE
are followed correctly. The reason is that the combined Voronoi regions of all AOI
and boundary neighbors, by definition, fully cover a node’s AOI boundary. Any
neighbor further away cannot enter the AOI-radius without first colliding with the
boundary neighbor set (and become the boundary neighbors’ enclosing neighbor). If
the MOVE procedure is followed properly, then a node would be notified for all
approaching unknown neighbors by its boundary neighbors (note that these unknown
neighbors necessarily will become the enclosing neighbors of the boundary neighbors,
if all boundary neighbors properly maintain their enclosing neighbor sets). The
completeness of neighbor discovery is thus guaranteed.

However, neighbor discovery may become incomplete in the following cases:

1) When the acceptor and the joiner have different sets of neighbors.
2) When a node is disconnected due to AOI-radius shrinking.
3) When nodes are moving too fast.

 30

Case 1) and 2) have been discussed and given solutions in section 3.2.7, also
note that case 2) does not happen in the basic model (when AOI-radius is fixed). We
consider case 3) an implementation issue and will discuss it in section 3.4.2. As will
be shown in next part, the current design of VON is able to maintain a high-level of
topology consistency.

Responsiveness
 Responsiveness in an NVE system is influenced by many factors: hardware
systems, software architecture, graphical subsystem, network subsystem, simulation
complexity, etc. Many elements related to the responsiveness of an actual system are
strongly depended on the implementation. Therefore, we only focus on the theoretical
aspect of VON’s design. In particular, we will define responsiveness in terms of the
number of virtual hops a message travels before reaching its destination.

 Here it is clear that due to the design of direct-connection between peers, VON
achieves a hop-count of 1 for the whole system. Transmission latency is therefore
minimized. Note that this hop-count is measured in terms of P2P topology, not the
hop-counts of actual physical network links. A message could travel a number of hops
physically before reaching its actual destination. However, this is the best scenario
achievable in a NVE context, because users are necessarily scattered on the physical
network, yet we cannot move them arbitrarily to optimize the network traffics.

Security
 Security is an important and serious consideration for many applications of NVE,
especially for commercial MMOG. However, it is also an inherently difficult problem
in distributed systems such as P2P. As users have full access to the software system
and network traffic, they could hack message packets and create modified software
that acts maliciously. Some of the security issues for VON include:

1) Uncooperative hosts: correct P2P topology requires cooperative nodes to
maintain, or neighbor discovery could become incomplete or incorrect. An
uncooperative host could send out incorrect discovery information or refuse
to notify relevant nodes, making the topology inconsistent.

2) Game state manipulation: For the various game states that are stored and

exchanged among peers, a cheating node could artificially modify game
states to the cheater’s advantage.

 31

As we note that security is a difficult problem, yet it is possible to solve other
aspects of the P2P NVE first (such as scalability), therefore, we choose not to
consider security issues in the present work.

Scalability

VON’s design matches the characteristics of scalable systems, namely:
resource-growing and decentralized resource-consumption. With dynamic AOI
adjustment, a node requires only a fixed amount of network resource to operate. This
characteristic allows any number of nodes to join the system as no node can become
the “bottleneck” for the system. We will demonstrate VON’s scalability with
simulation results in section 4.

Persistency
 We define persistency as the storage and maintenance of certain game states
across user sessions. Persistency is also not considered in the present work. As a result,
the applicability of our proposed system is limited. Certain applications that require
persistency, such as commercial MMOG, cannot adopt the present architecture.
However, there are other works that deal with persistent data storage on P2P network,
such as OceanStore [Kubiatowicz 00]. We believe that persistency can be achieved
with VON and this will be an important topic for future research (see section 5.3.4).

Reliability
 We will define reliability as whether the P2P NVE can sustain node failures and
remain functional, and whether the recovery from failure is quick with minimal
impact on normal operations. Currently there are two recovery mechanisms in VON:

1) During initial contact to a node, the new node would help to check for
missing neighbors (the EN command, see section 3.2.7).

2) As nodes move around, boundary neighbors may help to discover new nodes.
This behavior tends to correct inconsistency if at least enclosing neighbors
are kept correctly by each node.

In terms of recovery time, if a node suddenly fails, its neighbors will take notice

in the next time-step, and would update their own Voronoi accordingly. In most cases
this happens in the next time-step and would restore the P2P topology. If the leaving
node is a boundary neighbor, potential replacements are learned via still-connected
boundary neighbors, topology is thus also restored in the next time-step. We will
demonstrate the reliability of VON with simulation results in section 4.3.3 and 4.3.4.

 32

3.3.2 Complexity issues
While the construction complexity for Voronoi is O(n log n) for the best

algorithm, it will not be of concern in practical applications. The reason is that we
expect each node only to maintain a limited number of neighboring nodes (less than
50), so an application may still be quite responsive even if it needs to construct
Voronoi diagrams on a dynamic and regular basis.

 On the other hand, we should note that VON effectively reduces system-wide
communication cost to O(n) from the potentially high cost of O(n2) in broadcast-type
communication. As each node maintains only a finite set of neighboring connections,
the total communication cost is N x C, where N is the number of nodes, and C is the
maximum resource consumption at a particular node.

3.3.3 Comparisons with other systems
 Here we will make some comparisons of VON with other types of existing
systems (see section 2.3 for descriptions of these systems). We also summarize the
comparisons in Table 4.

Table 4: Comparisons of P2P NVE systems

 SimMUD Neighbor-list

exchange

Solipsis VON

Consistency

(Topology)

Supernode Neighbor-list

exchange

(partitioning)

Neighbor

notify & query

(undiscovery)

Neighbor notify

(high

consistency)

Responsive-

ness

High overhead

(message relay)

High overhead

(list exchange)

Medium overhead

(neighbor query)

Low overhead

(notify only)

Scalability Relied on

supernode

Fully-

distributed

Fully-

distributed

Fully-

distributed

Reliability Long up-time N/A N/A Self-

organizing

 33

SimMud
 SimMud is based on the P2P overlay Pastry and pseudo-multicast Scribe. As
Pastry is designed to be scalable, SimMud is also a scalable system. However, its
main problem is the additional latency introduced by the “supernodes” (coordinators).
In SimMud all messages must first be sent to the coordinator before being dispatched
to the affected nodes individually. This creates the following problem:

- Increased load for the coordinator nodes
- Increased latency due to relay by the coordinator nodes
- Increased complexity in design for backup mechanisms of the coordinators

On the other hand, VON would not overload any particular node, as the system is

fully-distributed, so no single node bears more responsibility than any other node.
Latency is minimized as all peers make direct connections to each other, without any
message relay. Also, because there is no super-node, no special back-up or recovery
mechanism is needed, making the algorithm relatively simple and straight-forward.

 However, by centralizing certain aspects of message delivery, SimMud is able to
leverage message compression and aggregation techniques to reduce bandwidth
consumption, which is one aspect that VON cannot support.

Neighbor-list exchange
 Compared with the approach suggested by Kawahara et al., our approach will
not face the problem of overlay partition, as each node must minimally maintain its
enclosing neighbor set. Enclosing neighbor set ensures that connections are
maintained with nodes in all possible directions. In Kawahara’s approach, maintaining
a fixed number of nearest neighbor does not prevent losing contacts with neighbors in
directions that lack spatially-close nodes.

 Another advantage of VON is that topology is maintained without extra message
transmission. Neighbor discovery requests are embedded in the normal message
traffics of position updates, and notification messages are sent only when an actual
neighbor discovery has occurred. This saves bandwidth compared to exchanging
neighbor list periodically. In fact, neighbor lists usually contain redundant information
that makes sending them a waste to bandwidth.

 34

Solipsis
 In terms of design concepts, VON is most similar with Solipsis, where each node
maintains a certain number of neighboring nodes (according to some rules), and that
neighbor discovery is done by mutual collaboration between neighbors. Both VON
and Solipsis also make direct connections among peers, which makes message
transmission efficient. Both are also fully-distributed, so do not need to worry about
super-node failure or overloading of particular nodes.

 The key difference between VON and Solipsis lies in which neighboring nodes
are maintained. In Solipsis the rule is that each node must be contained within a
convex hull formed by its neighbors (refer back to Figure 9 in section 2.3.3); for VON,
the neighbors to keep are the ones whose Voronoi regions overlap with the node’s
AOI. Note that the enclosing neighbor set automatically constitutes a convex hull, so
VON matches the requirement of Solipsis by default. However, there are cases where
Solipsis may not discover a neighbor properly or efficiently (refer back to Figure 10
in section 2.3.3), yet the same scenario would not happen for VON. Therefore, we
may consider VON as a more complete solution.

 35

3.3.4 Problems with Voronoi-based approach
 Despite the many good qualities for a Voronoi-based P2P design, there are still a
number of problems. Here we discuss some that are inherent to P2P-NVE system, or
to the Voronoi design.

Multiple messages

In a directly-connected P2P overlay, while it could be efficient to disseminate
messages to relevant peers, a message must be sent redundantly to each connected
peer. This certainly uses more bandwidth than client-server or the multicast approach,
where the message is sent only once. In effect, VON’s design trades bandwidth for
improved responsiveness.

Lack of compression / aggregation techniques

Due to the lack of centralized processing units, fully-distributed architecture
cannot utilize a popular bandwidth conserving technique: message compression and
aggregation. Here we again see how P2P does not necessarily conserve bandwidth,
but rather, it distributes the bandwidth and processing requirements from server to all
the participating nodes. Note however that, if super-nodes are used (as in SimMud,
see section 2.3.1) then compressions and aggregations can be utilized.

Worst-case neighbor size in Voronoi diagram

If there are many nodes that line up in a circular fashion (see Figure 23), then a
node may be forced to make connections beyond its capacity. Such situation could
overload a node if careful measures are not taken. However, we expect that such
situations are rare. Certain remedies could also be devised, such as asking machines
with spare capacity to host “dummy nodes” to artificially modify the Voronoi layout
(a topic for future research).

Figure 23: Worse-case scenario for connectable neighbors

 36

3.4 Implementation considerations

The design described so far still requires some small modifications if it were to
be implemented as a real system. The issues listed below are discovered either by
analyzing the fine interaction of the VON algorithm, or during the implementation of
the prototype library.

3.4.1 Delay counters

As nodes move around they tend to form and break connections frequently. To
avoid nodes break off a recently formed connection, only to re-connect again when
relative positions become favorable, a delay counter will help to ease the fluctuations.
Delay counter is also useful when we adjust the AOI-radius. As frequent adjustments
might cause undesirable fluctuation in connection patterns, we also set up a delay
counter for AOI-radius adjustments.

The exact threshold for the counters can be application-dependent and might

require a few trial-and-error experimentations to determine. In our prototype we set
the disconnection delay to 3 time-steps (e.g. a non-overlapped neighbor is
disconnected after it is seen as non-overlapped for 3 continuous time-steps), the
AOI-radius adjustment delay to 6 time-steps, and they appear to work well.

 37

3.4.2 Speed limit
If nodes in VON move too fast, beyond the coverage of its boundary neighbors’

enclosing neighbors, then its boundary neighbors will not be able to notify the correct
set of new neighbors (see Figure 24). To avoid such problem, we might need to
impose a “speed limit” to node movements.

Figure 24: Potential incomplete neighbor discovery caused by fast-moving nodes

If a node moves beyond the coverage of its boundary neighbors (to the triangle position),
boundary neighbors will not be able to notify the new neighbors properly.

This “speed-limit”, however, is both an application-specific decision, as well as

how much “movement buffer” the neighboring nodes can provide. It will also depend
on network latency. For example, if the boundary neighbors of the moving node have
large Voronoi regions, then the moving node is free to move at a high speed, as new
neighbors will not come into view until a large distance has been traveled.

 38

4. Simulation Results

We have implemented our Voronoi-based P2P design and verify VON’s various

properties with a simulation. In this part we will describe in detail, the experimental
setup, metrics used in measurements and the simulation results.

4.1 Simulation setup

As it is impractical for us to test the design of VON on actual network (we would
need thousands of volunteers), we have chosen to test the concepts with a simulator.
We will describe both the software architecture and the hardware environment below.

4.1.1 Software architecture
 We implement the VON protocol as a C++ library. Networking functions are
based on the open source cross-platform library ACE [Schmidt 02]. Steve Fortune’s
sweepline algorithm [Fortune 86] is used for Voronoi constructions. Our prototype
consists of a number of software components (C++ classes), listed in Table 5.

Table 5: C++ classes and respective functions of the VON prototype

Class Function
von Main interface of the VON class library

Voronoi General interface for Voronoi-related functions, such as insertion and

deletion of nodes, query and verification for enclosing and boundary

neighbors.

SFVoronoi Implementation of Steve Fortune’s Voronoi construction algorithm.

NetworkAcceptor Server-component that listens to a particular port.

NetworkHandler Connection handler for incoming network transmission.

MessageHandler Processing component for all incoming messages that compiles with the

VON protocol (JOIN, MOVE, LEAVE, QUERY)

SimNode Basic unit for running simulations. Acts as a simulated user in the NVE

and performs movement behaviors.

Interface Main interface to an outside simulator. It accepts parameters such as the

number of nodes to be created, and the number of time-steps to be run.

 39

4.1.2 Hardware environment and simulator
 We run our simulation with a Pentium-4 2.2GB computer with 512MB of RAM.
There is no actual network transmission during the simulation and all network
transfers are simulated using localhost connections.

 The software simulator runs a master program that creates each node as
individual threads. It then executes the simulation with a given number of time-steps.
For each time-step, the master simulator invokes each node to make one movement.
Each node would send the MOVE message to all the neighbors that it currently knows,
and allow some time for its neighbors to process the message. After a waiting period,
the node returns execution to the master thread, which in turn invokes the next node.
The behavior model for each node is that a node moves in a particular direction for
the duration between 1 and 25 time-steps. At the end a new direction is randomly
chosen. All nodes move with a constant velocity of 5 distance units per time-step.

 To visualize the actual topology for a given simulation, we also implement a
JAVA-based Graphical Users Interface (GUI) that uses the same C++ library as the
simulator. A screenshot of a simulation in action is shown in Figure 25.

Figure 25: A screenshot of the VON simulation (JAVA GUI)

Small circles represent the nodes in the P2P network. Large circle is the AOI. Dots in the circle
indicate established connections by node 37 (center). As can be seen, only a limited number of
AOI-neighbors are maintained.

 40

4.2 Metrics definition

 To demonstrate VON’s performance we need to define certain metrics. We
decide to capture the following types of indicators during the simulation:

4.2.1 Topology consistency

To understand how P2P NVE may perform compared to client-server
architecture, Kawahara et al. defines the metrics consistency [Kawahara 04]. The
metrics is defined as:

 Where N is the number of nodes, P(i) is the number of observed nodes of node i,
and Q(i) is the number of the AOI neighbors of node i. In other words, the metrics
attempts to find the ratio of neighbors actually seen versus the nodes that should be
seen by a particular node. However, given that their system does not consider
synchronization of events, the metrics is more appropriately termed as topology
consistency (as opposed to the more comprehensive notion of event consistency). We
therefore will use the term topology consistency to describe the metrics.

 Note that topology consistency does not take into account the difference between
the observed coordinates and the actual coordinates of a neighbor. Topology is
considered consistent as long as connections are maintained with the proper
AOI-neighbors. This is because it would be difficult to assign the difference in
coordinates for a missing neighbor (we can assign a large value to missing nodes, but
then it would impact consistency measurements in an arbitrary way, therefore it is not
appropriate). The measurement for differences between the actual and observed
coordinates is instead described by the next metrics.

4.2.2 Drift distance

Drift distance is described in the MiMaze paper [Diot 99] to determine how
much difference exists in the views between two nodes in a distributed virtual
environment system. We adopt the idea and will use it to measure how much
difference exists between a node’s local view and that of the correct global view of
topology. Drift distance is defined simply as the difference in coordinates (in absolute
value) between the observed coordinates and the actual coordinates of a node. To
make the metrics useful, we average drift distance for all nodes for the duration of the
simulation over the number of time-steps.

 41

4.2.3 Average neighbor size
In order to understand how many connections are made during the simulation, as

they are critically related to resource consumption and scalability of the system, we
record the number of neighbors a node knows at each time-step. Two types of data are
recorded: the number of connected-neighbors and the number of AOI-neighbors.

4.3 Results

We will present the results in three groups, to demonstrate the scalability,
topology consistency, and reliability of VON. Scalability is discussed first as it is the
focus of this thesis. However, scalability is not meaningful if consistency is poor,
therefore, we will discuss topology consistency next. In real networking environments,
packet delay and loss are inevitable, which necessarily will degrade consistency.
Therefore, the key to maintain consistency in actual networks is the speed of recovery
from inconsistency, which we will present as the first part of the results on reliability.
In the second part of reliability discussion, we will study the effect of packet loss on
VON’s design. As mentioned in section 1.3, we do not consider latency currently, and
assume that all messages are processed immediately once they are sent.

4.3.1 Scalability

We use the following simulation parameters to study both VON’s scalability and
topology consistency:

World dimension: 1000x1000
AOI-radius: 150
Packet loss rate: 0
Simulation time-step: 1000
Maximum connection per node: 10
Number of nodes: 10 to 250, with an increment of 20

Note that the parameters we choose will create a fairly dense area to test VON’s

performance under crowding situations. Also, if we assume message-update is 10
times per second (for comparison, a MMOG updates events at a rate of 3-5 times per
second, while a fast pace first-shooter action game updates events at 10 – 15 times per
second), then 1000 time-steps is equivalent to 100 simulated seconds, or about one
and a half minute in the real world.

 42

We show the transmission size of each node during one simulated second (10
time-step) for both the basic and dynamic AOI models. Average transmission size is
shown in Figure 26 and the maximum size among all nodes is shown in Figure 27.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 25 50 75 100 125 150 175 200 225 250

Number of Nodes

Si
ze

 (k
b)

send (basic)

recv (basic)

send (dAOI)

recv (dAOI)

Figure 26: Average transmission size per node per second

We see that the average transmission size grows linearly for the basic model,

which indicates that it will not be scalable as growth can progress unbounded. On the
other hand, transmission size grows at a decreasing rate with dynamic AOI. Resource
consumption at a given node therefore becomes bounded.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 25 50 75 100 125 150 175 200 225 250
Number of Nodes

Si
ze

 (k
b)

send (basic)

recv (basic)

send (dAOI)

recv (dAOI)

Figure 27: Maximum transmission size per second among all nodes

 43

 We see that there exists an upper-bound of about 3 kb per second for the average
transmission, and less than 4kb for the maximum transmission. This shows that even
the most loaded node can operate within the limits of current generation of broadband
(which typically has a capacity of at least 256 kbits per second, or 32 kb per second).

Note that because we assume for zero packet loss, the average amount of
messages sent and received are equal, and it is shown by the overlaps of the send and
receive lines in Figure 26. In the basic model, the linear growth in transmission size is
due to the fact that nodes are randomly and uniformly distributed. This makes the
node density within AOI-radius to grow linearly with the total number of nodes.

 The growth pattern in transmission size is explained by the number of neighbors
maintained. Figure 28 shows clearly that upper bounds exist for neighbor-size in the
dynamic AOI model, while the neighbor size grows linearly in the basic model.
Number of average connected-neighbors approaches 10 (which is the connection
limit), while the number of average AOI-neighbors approaches 6.

 The difference between the average number of connected-neighbors and
AOI-neighbors shows that there is a small overhead to maintain topology in VON.
The additional connections are likely caused by the requirement to keep enclosing
neighbors as the minimal set to ensure topology consistency. However, this overhead
remains constant (at about 4 nodes) regardless of the number of nodes in the system.

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

Number of Nodes

N
ei

gh
bo

r S
iz

e

connected (basic)
connected (dAOI)
AOI (basic)
AOI (dAOI)

Figure 28: Average neighbor size for basic and dynamic AOI models

 44

The benefit of P2P is more evidently demonstrated when compared to the

client-server architecture. Figure 29 shows the transmission size per node per second
for both client-server and VON. The server-side network resource consumption is
calculated by estimation of equivalent functionality (by assuming each movement
requires 8 bytes for x and y coordinates). Message size grows faster for client-server
than for VON, as the server must deal with many clients simultaneously. Note also
that the average message size grows faster for send than receive at the server. The
reason is that while the server receives only one coordinate message from each client,
it must send the coordinates of all AOI-neighbors of that client in return.

0

20

40

60

80

100

120

140

160

180

0 25 50 75 100 125 150 175 200 225 250

Number of Nodes

Si
ze

 (k
b)

send (client-server)

recv (client-server)

send (dAOI)

recv (dAOI)

Figure 29: Comparison of transmission size between VON and client-server

Dynamic AOI adjustment thus plays an important role in achieving scalability in

VON, and its effects on AOI-radius are shown in Figure 30. Here we see that the
AOI-radius starts at 150 but gradually decreases to around 85 for 150 nodes. By
shrinking the AOI-radius, node density within AOI thus becomes bounded.

 45

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250
Number of Nodes

A
ve

ra
ge

 A
O

I-r
ad

iu
s

Figure 30: Effect of node increase on average AOI-radius

 While the average number of neighbors maintained is bounded, one potential
concern is that the maximum number of connections at a given moment might exceed
a particular node’s capacity. Table 6 shows the maximum and average number of
neighbors kept for each simulation trial. We see that the maximum number of
neighbors maintained is indeed much higher than the average (for example, 32 nodes
were connected at one point versus the average of 8.7 nodes during the 230-node trial).
However, Figure 27 has shown that the maximum transmission size is indeed bounded.
The large connection size therefore indicates a temporary surge of connections that is
quickly restored to normal. It also means that overall VON is still scalable, although
connection patterns could at times be disruptive.

Table 6: Average and maximum neighbor size for basic and dynamic AOI models

 Number of Nodes

Model 10 30 50 70 90 110 130 150 170 190 210 230 250

connected max 9 13 13 15 17 21 24 23 27 26 41 35 44

 avg 4.31 5.56 6.26 7.06 7.94 8.76 9.52 10.72 11.81 12.49 13.77 15.04 16.03

AOI max 3 6 11 13 15 19 20 20 24 24 30 31 31
basic

 avg 0.04 1.47 2.58 3.87 5.12 6.10 7.11 8.42 9.54 10.26 11.54 12.76 13.71

connected max 9 13 13 14 16 19 24 22 22 26 23 32 28

 avg 4.31 5.56 6.26 7.01 7.61 7.97 8.15 8.34 8.51 8.59 8.65 8.70 8.82

AOI max 3 6 11 12 12 19 14 20 20 23 22 26 26
dAOI

 avg 0.40 1.47 2.58 3.78 4.64 4.97 5.18 5.21 5.32 5.32 5.25 5.12 5.23

 46

4.3.2 Topology consistency
 Figure 31 shows the topology consistency measurements for both the basic and
dynamic AOI models as a function of total number of nodes in the system.

99.00

99.10

99.20

99.30

99.40

99.50

99.60

99.70

99.80

99.90

100.00

0 50 100 150 200 250
Number of Nodes

To
po

lo
gy

 C
on

si
st

en
cy

 (%
)

basic
dynamic AOI

Figure 31: Topology consistency for basic and dynamic AOI models

Here it is clear that topology consistency remains close to 100% for all trials in

the basic model. The slight consistency drop (for example, 99.92% for 250 nodes) is
likely due to a simulator problem. As observed during the simulation, some nodes
may occasionally stop to respond to other nodes, causing them to become increasingly
inconsistent in their knowledge of neighboring nodes.

A larger decrease in topology consistency exists for the dynamic AOI model.

However, it should be noted that the lowest value is still above 99.70%. The cause is
likely due to asymmetric understandings of neighbor relationship after AOI-radius
adjustments (refer back to Figure 22 in section 3.2.7). However, inconsistencies are
bound to occur in real networks where latency and pack loss exist. Therefore, the
more important question to ask is: can inconsistency be fixed quickly when occurred?
We will answer this question in the next section.

 The high degree of topology consistency in VON is further confirmed by the
measurements of average drift distance (shown in Figure 32). Here we see that the
average value of drift distance is very low (i.e. close to 0) for both the basic and
dynamic AOI models.

 47

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250
Number of Nodes

D
rif

t D
is

ta
nc

e

basic
dynamic AOI

Figure 32: Average drift distance for basic and dynamic AOI models

4.3.3 Reliability (recovery from inconsistency)
 Figure 33 shows a time-series of changes in topology consistency for 110 nodes
between time-step 150 and 250. We see that the per-step average consistency remains
high between 99% and 100%. For particular nodes, we do see drops in consistency
occur occasionally. However, the time-series shows that the drops usually recover
quickly within a few time-steps. Note that some of the low consistencies seen (for
example, consistency for node 1 drops to 70% at one point) do not necessarily
indicate poor performance, as topology consistency can become low easily when
AOI-neighbors are few (for example, if only one of the two visible AOI-neighbors are
seen, then consistency is calculated to be only 50%).

70

80

90

100

150 160 170 180 190 200 210 220 230 240 250

Time-steps

To
po

lo
gy

 C
on

si
st

en
cy

 (%
)

per step
node 1
node 91

Figure 33: Change in topology consistency for 110 nodes (time-steps: 150-250)

 48

A more relevant indicator then, is how many time-steps VON takes to recover
from inconsistency, which is shown in Figure 34. We see that the average number of
recovery-steps is about 1.3 to 1.5, and stays relatively constant for node size above
100. This shows that VON maintains good robustness against topology inconsistency.

0

1

2

3

4

0 50 100 150 200 250

Number of Nodes

St
ep

s

Figure 34: Average number of steps to recover from inconsistency

4.3.4 Reliability (effect of packet loss)

We will now discuss how VON performs in environments where packets may be
lost during transmission. We use the following parameters for simulation:

World dimension: 1000x1000
AOI-radius: 150
Packet loss rate: 0% ~ 100%
Simulation time-step: 1000
Maximum connection per node: 10
Number of nodes: 150

 Packet loss is simulated by generating a random number when processing a
received message. If the random number falls below the specified loss rate, then the
message is ignored. Packet loss is applied to MOVE, MOVE_B, MOVE_BD, and
NODE messages (refer back to section 3.2.6 for the message protocol). Other
message types are still delivered reliably, as they are essential to ensure the correct
function of the overlay. Dynamic AOI model is adopted for the simulation as we want
to see whether scalability can still be achieved when packet loss exists.

 49

 We first show the effect of packet loss on topology consistency in Figure 35.
Topology consistency is maintained at a high level even when the loss rate is 50%.
After a certain critical point (after 60% packet loss) consistency begins to drop down
dramatically (which might indicate the existence of overlay partitions).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Loss Rate (%)

To
po

lo
gy

 C
on

si
st

en
cy

 (%
)

Figure 35: Effect of loss rate on topology consistency (dynamic AOI model)

 The effect of packet loss on average drift distance is shown in Figure 36. We can
see that for loss rate below 50%, the drift distance remains relatively low (but grows
exponentially), and begins to increase significantly after a loss rate of 60%.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Loss Rate (%)

A
ve

ra
ge

 D
rif

t D
is

ta
nc

e

Figure 36: Effect of loss rate on average drift distance

 50

 Figure 37 shows the effect of loss rate on average neighbor size for both
connected-neighbors and AOI-neighbors. Here we again see that neighbors are
maintained in a relatively stable fashion until a loss rate of 60%, when the neighbor
size begins to drop dramatically.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Loss Rate (%)

N
ei

gh
bo

r S
iz

e

connected
AOI

Figure 37: Effect of loss rate on average neighbor size

In Figure 38, we see the number of steps to recover from inconsistency grows

slowly for loss rate below 50%, then increases sharply after the loss rate of 60%. This
result again confirms that a critical point exists between the loss rate of 50% and 60%.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Loss Rate (%)

St
ep

s

Figure 38: Effect of loss rate on average recovery steps

 51

 In summary, it can be seen that VON maintains relatively stable behavior for loss
rate up to 50%, and only starts to degrade after a loss rate of 60%. This is good
indication that VON is reliable and may endure severe packet loss.

 We suspect that at the critical point of loss rate between 50% and 60%, some
overlay partition might be occurring. However, confirmation and solution to this
scenario is left for future research (see section 5.3.2 for discussion).

 One remaining question is: how reasonable is our choice to allow loss in only the
MOVE and NODE messages? In other words, is guaranteed delivery of other types of
messages suitable in real systems, as guaranteed delivery could degrade system
performance (i.e. responsiveness) by introducing too much delay?

 To answer this question, we also measure the percentage breakdown of total
transmission by message types (see Table 7). Here we see that all MOVE-related
messages (i.e. MOVE, MOVE_B, and MOVE_BD) and NODE messages together
occupy roughly 95% of all transmission. Therefore, sending other types of messages
reliably (for example, via TCP) will not degrade system performance.

Table 7: Percentage breakdown of transmission size by message types (for 150 nodes)

 Loss rate (%)
Types 0 10 30 50 70 90 Avg Min Max

GREET 0.54 0.55 0.55 0.56 0.58 0.42 0.53 0.42 0.58
ID 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.02
QUERY 0.04 0.04 0.05 0.05 0.07 0.36 0.10 0.04 0.36
HELLO 2.79 2.82 2.84 2.87 2.94 1.89 2.69 1.89 2.94
EN 1.10 1.11 1.13 1.13 1.14 0.76 1.06 0.76 1.14
MOVE 6.51 6.50 6.74 7.37 7.58 2.51 6.20 2.51 7.58
MOVE_B 55.64 55.62 56.41 57.98 62.70 86.74 62.52 55.62 86.74
MOVE_BD 1.72 1.69 1.57 1.44 1.28 0.47 1.36 0.47 1.72
NODE 31.66 31.66 30.70 28.60 23.71 6.84 25.53 6.84 31.66
Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00
MOVE+NODE 95.52 95.47 95.43 95.39 95.27 96.56 95.61

 52

5. Conclusion

5.1 A promising scalability solution

 We have presented a promising solution for constructing scalable Networked
Virtual Environment based on Voronoi diagram. The key idea of the design is for each
node to maintain a Voronoi diagram of the neighboring nodes within its area of
interest. Although demonstrating scalability in a real system is not practical for the
current work, we have shown the scalability potential of Voronoi-based P2P with
simulation results.

 In the simulation, it is shown that there are upper bounds to message
transmission (both in maximum and average message size) and the average number of
neighbors maintained by a node. This indicates that the amount of bandwidth and
processing requirement for each node is bounded, independent of the total number of
nodes in the system. The bounded resource-consumption characteristic is evidence
that the system is scalable. The proposed design offers several attractive qualities for
creating large-scale virtual environments:

Scalable
 VON restricts message traffic transmitted between host computers to only those
that are relevant, achieving near-ideal interest management and message filtering. As
the bandwidth and processing requirement for each node is independent of the total
number of nodes in the system, and depends only on the number of neighboring nodes
that it interacts with, the system is thus scalable.

Efficient
 Not only message traffic is filtered down to near-ideal interest management, but
because P2P topology is maintained with minimal overhead, redundant information
exchange is greatly avoided. By utilizing direct connection between peers, messages
also reach their relevant targets with the least amount of latency.

Robust
 By making the architecture fully-distributed, there is no single point of failure
that exists in client-server architecture. Also, due to the fact that each node maintains
direct link with those that it interacts with, recovery from node failure can be done
quickly with little overhead.

 53

Simple
 The algorithm for keeping existing neighbors and discovering new neighbors are
facilitated with Voronoi diagram, with only a few rules to follow. Compared to other
P2P schemes where each node may need to maintain various types of list or table, or
sophisticated partitioning and merging mechanism for regions, VON’s design is rather
simple. It is also simpler than server-cluster architecture where various partitioning,
load-balancing, and entity-migration mechanisms need to be considered.

Affordable
 As the design is fully-distributed and does not place heavy responsibility onto
any one node, the whole system may be constructed with just one light-weight
gateway server, making it affordable to small NVE developers, even individuals.

 54

5.2 Potential applications

VON’s scalability, efficiency, and robustness make it a natural foundation for
constructing certain types of applications. We discuss some of the possibilities below:

Massively Multiplayer Online Games (MMOG)
 Although we have not developed adequate mechanism to address persistency and
security issues, which are crucial for commercial NVEs, VON can still be useful to
MMOG by relieving the server of user position maintenance. If there is no serious
security consideration for user positions, then position updates (which usually take a
large portion of network traffics in MMOG) can be maintained by using VON.

Large-scale military simulation
 VON’s design makes it suitable for constructing truly large-scale virtual
environments affordably. Its scalability and low-cost characteristics match the design
goals for SIMNET (refer back to section 2.1), which is to build a large number of
low-cost simulators. As security is generally not an issue for military simulators (all
simulators are under the military’s internal controls), military applications of VON
might actually be easier to realize than commercial ones.

3D Web
 There are now many websites that offer 3D virtual navigation for training,
product demonstration, or touring purposes. However, most of these navigations only
allow single-user experience. Part of the reason is that there has not been an easy and
affordable way to add multi-user capability to such environments, and all current
solutions require costly server-side investments. The simplicity and affordability of
VON could allow multi-user capability be added to these 3D environments.

Scientific simulations
 Although we have mostly discussed VON in the context of virtual environment
applications, viewed in a more general way, VON is in fact a mechanism to
interconnect many dispersedly located nodes placed in some logical dimensions that
require frequent synchronizations. Therefore, for certain scientific simulations that
have a spatial orientation and require frequent state synchronizations, VON might be
a possible platform to run such simulations on a large scale.

 55

5.3 Future research

Work remains to be done to make VON more comprehensive to support the full

functional requirements of NVE systems. We will discuss a few major topics for
future research in this section.

5.3.1 Reliability measurements

We have discussed VON’s reliability in terms of how fast it recovers from
topology inconsistency and some simulated effects of packet loss. However, a more
complete and realistic analysis of reliability should also consider latency and the issue
of node failures. Experiments conducted in actual network environments will also
shed lights on VON’s real performance. Additionally, the effects of different
movement velocities on topology consistency should also be studied.

5.3.2 Overlay partition problem

All P2P overlay networks face the problem of splitting into separate partitions
(e.g. the overlay becomes not fully-connected). We have shown earlier that it would
not happen under normal operation (if the number of failing node is small). However,
if a large number of nodes fail simultaneously, or if packet loss rate is high, it is still
possible for the overlay to be broken into separate parts. Kawahara et al. suggested in
their paper that each node may keep information for some distant nodes, so that
contacts can be made to restore the overlay in case of massive failures. They also
introduced the concept of random introduction [Kawahara 04], which is for each node
to check back with the server periodically to re-discover missing nodes. One
important research direction therefore is a distributed recovery mechanism that
provides high reliability against massive node failures.

5.3.3 Distributed event consistency
 Event consistency has not yet been considered in the present design, therefore it
is not guaranteed in the simulation. Some may consider it difficult to maintain event
consistency without using a centralized authority (e.g. client-server architecture).
However, we argue that it is not only achievable, but might even be done more
efficiently than centralized approach.

 We note that in any distributed system such as NVE, due to network latency,
absolute event consistency simply does not exist (i.e. it takes time for message to
travel from host to host, messages cannot be processed and executed at the same time,
if time is defined as an objective wall-clock time). What centralized event processing

 56

achieves is simply the preservation of casual order consistency and time-space
consistency mentioned earlier (in section 1.5). Event consistency may be more
appropriately called “bounded inconsistency”. That is, although inconsistency exists,
it is tolerated as long as it does not diverge and disturb user experience. What
client-server architecture represents, with respect to consistency, are in fact two
mechanisms:

1) A notion of absolute reality (e.g. a true version of reality).
2) A mechanism to correct inconsistency so it remains bounded.

Element 1) is simply the version of various game states maintained at the server,

including the order of event occurrence (casual order consistency) and the actual
values of various states (time-space consistency). In fact, because server’s version is
considered “the truth”, it could even sacrifice a client’s idea of its own position if it
contradicts the server’s version, even though strictly speaking, a client should know
better what its own current position is. Client-server architecture simply chooses to
ignore any client-side judgment in favor of the server’s view of the world. Element 2)
is done by sending out server states periodically to clients, so that all the clients
follow the same event occurrences and states updates, more or less within the server’s
version.

 We think that the notion of event consistency commonly referred in client-server
architecture can be dissected into the above elements. Therefore, we may achieve
event consistency for P2P systems if these two elements can also be defined. To create
bounded consistency in VON, we offer some initial ideas:

Definition of the “true version”:
 In client-server architecture, the authoritative event order and states are defined
as the version which the server maintains. However, in a fully-distributed system no
central repository of states exists, so we necessarily need to resort to a model where
each node keeps its own version of part of the “global reality”. The global
environment will exist more as a consensus between nodes than as synchronization of
all the events (which is difficult to do efficiently, see the idea in Crosbie Fitch’s article
“Cyberspace in the 21st Century” [Fitch 01]).

One possibility is to allow each node to be the owner of all event states within its
Voronoi region (note that the states include the node’s own position and the various
objects that might present in the region). Then, as the Voronoi region changes shape

 57

due to position updates, ownership may be transferred to other nodes in a
deterministic manner. However, at all times each node remains the authoritative
owner of its own position. In such a scheme, instead of one machine maintaining the
true version, every machine maintains a small part of the complete states of the world.

Recovery mechanism from inconsistency

Some previous works to achieve event consistency in a distributed simulation
exist in the literature, namely, the concept of critical causality to preserve casual order
consistency [Zhou 02], and bucket synchronization to preserve time-space consistency
[Diot 99]. We will describe each of them below:

Critical Causality
 Real-world events happen according to certain casual orders, and we
become accustomed to such ordering. We will find simulation behavior “weird”
if such ordering is violated. The concept of critical causality is to define events
as “trigger-response” pairs, such that if an event is created as the result of a
previous event, then the previous event is included in the message sent to other
entities. This way, the receivers of the “response event” will also know the
“triggering event” and be able to display it first, should it miss the trigger event.
This casual receive order delivery will preserve the correct causality of trigger
and response events, but not necessarily preserve absolute ordering over logical
time. This way it could avoid the costly delay required for absolute event
ordering and improve responsiveness of the simulation.

Bucket Synchronization
 The idea of bucket synchronization is that simulation is divided into discrete
time buckets. Each bucket has a clearly defined start time and end time, and is
followed by the next bucket. As messages are received from other nodes, they
are placed into respective buckets according to the time-stamp of the sender of
the message. When the end time of a bucket is reached, event messages in the
same bucket are sorted by time-stamp, and then processed together.

By adding a little delay to the event processing, synchronizations of all the
relevant events can be achieved, given that event messages do arrive no later
than a pre-specified playout delay. If a message is lost in transmission or delayed,
then it will be ignored. Some dead reckoning mechanism might be used to
estimate entity position in place of the missing message based on historical
records.

 58

In the MiMaze paper, experiments were carried out such that the playout delay is
set to 100ms, and there are 25 buckets per second (each bucket is 40ms long). Users
of the system reported smooth interactivity.

 Event consistency is one aspect that has not being addressed in the present work.
However, the above discussion should give some ideas as to how it could be achieved
to an acceptable degree.

5.3.4 Persistency maintenance
 Persistency is the next requirement after scalability for creating a realistic,
immersive environment. It is also the corner stone for building true cyberspace.
However, achieving persistency on P2P architecture is also an inherently difficult
problem, as nodes in P2P overlay may fail at any time. Persistency therefore either
has to be achieved with some centralized repository or with sufficient data
redundancy across many nodes.

 We expect that in the end, a decentralized solution to persistency would be
required if scalability is to be supported, however, persistency cannot be achieved
unless we can make the assumption that a large percentage of nodes in the virtual
environment stay online most of the time.

 Our current thought about potential persistency solution in VON is to have each
node manage the object or event states within its own Voronoi region (as mentioned
previously in section 5.3.3). This would allow transient states be maintained. To make
states persistent, each node may send back a state update back to a central “game state
server”. The server would maintain the persistency for all the states. The server does
not interact with any node, but simply serves as a repository. Nodes and server may
negotiate the frequency for update, so that server would not be overloaded.

 This would be a centralized solution to the persistency problem. For
decentralized solution, we might look into distributed database research such as
OceanStore [Kubiatowicz 00] for inspirations.

 59

5.3.5 P2P-based 3D streaming
 To make NVE truly accessible and affordable, it is best if various types of NVE
can be visited as easily as browsing the web, with a universal client program that
could access various NVEs set up by companies or individuals. However, this would
require large amount of 3D content data, such as 3D models, textures, animations be
downloaded in real-time. A type of 3D streaming technique [Sahm 04] may thus be
required alongside with message exchange and filtering techniques.

 We consider 3D streaming a crucial part in promoting accessibility to NVEs, and
it would create even greater impact if it is constructed on top of a matured P2P
architecture. It is still early to discuss about P2P-based 3D streaming, as both P2P and
3D streaming are relatively new concepts, yet we do feel that their importance and
applicability will become evident as infrastructure matures and P2P applications
become integral to daily life.

 60

List of References

[AC] Asheron's Call. [Online]. Available: http://ac.turbinegames.com

[Aurenhammer 91] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data
structure,” ACM Computing Surveys (CSUR), vol. 23, pp. 345-405, 1991.

[Butterfly 03] Butterfly.net Inc., The Butterfly Grid, 2003. [Online]. Available:
http://www.butterfly.net/platform

[Clarke 00] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” in Proc. ICSI Workshop
Design Issues in Anonymity and Unobservability, Berkeley, CA, June 2000, pp.
46-66.

[Diot 99] C. Diot, L. Gautier, “A distributed architecture for multiplayer interactive
applications on the Internet,” IEEE Network, vol. 13, pp. 6-15, 1999.

[Dwyer 86] R. A. Dwyer, “A simple divide-and-conquer algorithm for computing Delaunay
triangulations in O(n log log n) expected time,” in Proc. 2nd Annual Symp.
Computational Geometry, Yorktown Heights, NY, 1986, pp. 276-284.

[eDonkey] eDonkey. [Online]. Available: http://www.edonkey2000.com

[EQ] Everquest. [Online]. Available: http://www.everquest.com

[Fitch 01] C. Fitch, “Cyberspace in the 21st century: Foundation II,” [Online]. Available:
http://www.gamasutra.com/features/20010226/fitch_01.htm

[Fortune 86] S. Fortune, “A sweepline algorithm for Voronoi diagram,” in Proc. 2nd Annual
Symp. Computational Geometry, Yorktown Heights, NY, 1986, pp. 313-322.

[Funkhouser 95] T. A. Funkhouser, “RING: A client-server system for multi-user virtual
environments,” in Proc. 1995 Symp. Interactive 3D Graphics. Apr. 1995. pp.
85-92.

[Gnutella] Gnutella. [Online]. Available: http://gnutella.wego.com

[Gowda 83] I. G. Gowda, D. G. Kirkpatrick, D. T. Lee, and A. Naamad, “Dynamic Voronoi
diagrams,” IEEE Trans. Information Theory, vol. 29, pp. 724-731, 1983.

[Guibas 85] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams,” ACM Trans. Graphics, vol. 4, pp.
74-123, April 1985.

[Kawahara 04] Y. Kawahara, T. Aoyama, and H. Morikawa, “A peer-to-peer message exchange
scheme for large-scale networked virtual environments,” Telecommunication
Systems, vol. 25, pp. 353–370, 2004.

[Keller 02] J. Keller and G. Simon, “Towards a peer-to-peer shared virtual reality,” in Proc.
22nd Int. Conf. Distributed Computing Systems (Workshops), Vienna, Austria, Jul.
2002. pp. 695-700.

[Keller 03] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual world,” in
Proc. Int. Conf. Parallel and Distributed Techniques and Applications (PDPTA
03), Las Vegas, NV, 2003, pp. 262-268.

 61

[Knutsson 04] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for massively
multiplayer games,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 96-107.

[Korpela 01] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“SETI@home-massively distributed computing for SETI,” IEEE Computing in
Science & Engineering, vol. 3, pp. 78-83, 2001.

[Kubiatowicz 00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao, “OceanStore: an
architecture for global-scale persistent storage,” in Proc. 9th Int. Conf.
Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, 2000, pp. 190-201.

[Kung 01] H. T. Kung and C. H. Wu, “Hierarchical peer-to-peer networks,” Inst. of
Information Science, Academia Sinica, Taiwan, Technical Report IIS-TR-02-015,
Apr. 2001.

[Liebeherr 02] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicast with delaunay
triangulations,” IEEE J. Selected Areas in Communications, vol. 20, pp.
1472-1488, Oct. 2002.

[Lineage] Lineage. [Online]. Available: http://www.lineage.com/

[Macedonia 95-1] M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutzman, and P. T. Barham,
“Exploiting reality with multicast groups,” IEEE Computer Graphics and
Applications, vol. 15, pp. 38 - 45, Sept. 1995.

[Macedonia 95-2] M. R. Macedonia, D. P. Brutzman, M. J. Zyda, D. R. Pratt, P. T. Barham, J. Falby,
and J. Locke, “NPSNET: a multi-player 3D virtual environment over the Internet,”
in Proc. 1995 Symp. Interactive 3D Graphics, Monterey, CA, 1995, pp. 93-94.

[Miller 95] D. C. Miller and J. A. Thorpe, “SIMNET: The Advent of Simulator Networking,”
in Proc. IEEE, vol. 83, pp. 1114-1123, Aug. 1995

[Morse 00] K.L. Morse, L. Bic, and M. Dillencourt, “Interest management in large-scale
virtual environments,” Presence, vol. 9, pp. 52-68, 2000.

[Napster] Napster. [Online]. Available: http://www.napster.com

[NCSoft 04] NCSoft, Corp. “IR Report Mar. 2004.” [Online]. Available: http://www.ncsoft.net

[Ratnasamy 01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable
content-addressable network,” in Proc. ACM SIGCOMM, San Diego, CA, Aug.
2001, pp. 161-172.

[Rowstron 01] A. Rowstron and P. Druschel, “Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems,” in Proc. 18th IFIP/ACM Int. Conf.
Distributed Systems Platforms (Middleware), Nov. 2001

[Sahm 04] J. Sahm, I. Soetebier, and H. Birthelmer, “Efficient Representation and Streaming
of 3D Scenes,” Computers and Graphics, vol. 28, pp. 15-24, 2004.

[Schmidt 02] D. C. Schmidt and S. Huston, C++ Network Programming: Mastering
Complexity with ACE and Patterns. Addison-Wesley Longman, 2002. [Online].
Available: http://www.cs.wustl.edu/~schmidt/ACE.html

[Singhal 96] S. K. Singhal and D. R. Cheriton, “Using projection aggregations to support
scalability in distributed simulation,” in Proc. 16th Int. Conf. Distributed
Computing Systems, Hong Kong, May 1996, pp. 196-206.

[Singhal 99] S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation, ACM Press, New York, 1999.

 62

[Skype] Skype. [Online]. Available: http://www.skype.com

[Stoica 03] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek
and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for Internet
applications,” IEEE/ACM Trans. Networking, vol. 11, pp. 17-32, Feb. 2003.

[Stytz 96] M. Stytz, “Distributed virtual environment,” IEEE Computer Graphics and
Applications, vol. 16, pp. 19-31, May 1996.

[UO] Ultima Online. [Online]. Available: http://www.uo.com

[Zhao 04] B.Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: a resilient global-scale overlay for service deployment,”
IEEE J. Selected Areas in Communications, vol. 22, pp. 41-53, 2004.

[Zhou 04] S. P. Zhou, W. T. Cai, B.-S. Lee, and S. J. Turner, “Time-space consistency in
large-scale distributed virtual environments,” IEEE Trans. Modeling and
Computer Simulation, vol. 14, pp. 31-47, 2004.

[Zona 03] Zona Inc, “Terazona: Zona application frame work,” 2003. [Online]. Available:
www.zona.net/whitepaper/Zonawhitepaper.pdf

[Zyda 92] M. J. Zyda, D. R. Pratt, J. G. Monahan, and K. P. Wilson, “NPSNET: constructing
a 3D virtual world,” in Proc. 1992 Symp. Interactive 3D Graphics, Cambridge,
MA, 1992, pp.147-15

Thesis revision: 3.8 (2005/04/04 17:30, 2005/10/11 10:22, 2006/03/08 17:19, 2006/07/01 22:28)

Scalable Peer-to-Peer Networked Virtual Environment
Shun-Yun Hu

Dept. of Computer Science and Information Engineering
Tamkang University

Tamsui, Taipei County 251, Taiwan
syhu.tw@yahoo.com.tw

Guan-Ming Liao
Institute of Physics
Academia Sinica

Taipei 11529, Taiwan
gm.liao@msa.hinet.net

ABSTRACT
We propose a fully-distributed peer-to-peer architecture to solve the
scalability problem of Networked Virtual Environment in a simple
and efficient manner. Our method exploits locality of user interest
inherent to such systems and is based on the mathematical construct
Voronoi diagram. Scalable, responsive, fault-tolerant NVE can thus
be constructed and deployed in an affordable way.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design --- Distributed networks

General Terms: Algorithms, Design

Keywords
Networked Virtual Environment (NVE), peer-to-peer (P2P),
massively multiplayer (MMP), Voronoi diagram, scalability,
interest management

1. INTRODUCTION
Networked Virtual Environments (NVEs) [13] are computer-

generated, synthetic worlds that allow simultaneous interactions of
multiple participants. Since the early days of SIMNET, a U.S.
Government project for large scale combat simulations, to the recent
boom of Massively Multiplayer (MMP) Online Games (MMOG)
[8], efforts to allow people to interact in realistic, immersive virtual
environments have gone a long way. Science fiction works, such as
Neal Stephenson’s novel Snow Crash and the recent Matrix movie
trilogy, serve as inspirations to many for the eventual creation of a
3D environment that is truly massive, persistent, realistic and
immersive. With rapid technology developments, converging
advances in CPU, 3D accelerator, and bandwidth may make the
vision come true in the foreseeable future. However, a number of
issues exist in the creation of a large-scale NVE, namely:
Consistency - For meaningful interactions to happen, each user’s
experiences in the virtual world must be more or less consistent.
This includes maintaining states and keeping events synchronized.
Performance / Responsiveness - NVEs are simulations of the real
world. Responsiveness therefore is important for immersion.
However, performance requirements vary between applications.

Security - Most NVEs allow people to engage competitively (e.g.
combat or treasure hunt). User authentication and fairness against
cheating therefore are required. In fact, this is often the most
concerned issue by commercial NVE developers.
Scalability – Scalability usually concerns with the number of
simultaneous users in NVE [13]. It is important in two respects: (1)
Content possibility. Certain game plays are only realizable when
many people participate, such as community and social oriented
game play. (2) Service availability. Large-scale NVEs are similar to
websites, where usage may increase dramatically and unexpectedly.
Systems will break if they are not scalable.
Persistency - To create sophisticated contents, certain data, such as
user profile and valuable virtual objects, must be persistently stored
and accessed between user sessions.
Reliability / Fault-tolerance – User experience is negatively
affected if a play session suddenly breaks down due to server failure.
Reliability is thus important to make NVE a service with quality.

The first three issues exist for all multiplayer virtual
environments. Remaining ones are additional criteria for MMP
applications. We consider scalability the most important issue if we
plan to build truly massive worlds and applications, which millions
of people can enjoy. Current approaches to scalability mostly
include setting up multiple servers or server-clusters. However,
maintaining server resources is costly and has inherent design
limitation, as we will discuss in the next section.

This paper proposes a fully-distributed peer-to-peer (P2P)
architecture, which attempts to solve the scalability problem based
on the mathematical construct Voronoi diagram [4]. The main
contribution of the paper is the proposal of a very simple and
resource-efficient solution to the difficult scalability problem. Our
solution dramatically reduces server load and can be achieved with
a single lightweight server. In fact, the server only serves as an
access point that provides authentication, and is not required after
login. This will allow scalable NVEs to be built affordably.

In order to simplify the problem, two assumptions are made: (1)
user computers can be trusted (2) message exchange itself is
sufficient for maintaining the states of the world (i.e. user position,
user actions, and temporary objects). In other words, currently we
do not take security and persistency issues into consideration.

We will analyze the scalability problem in Section 2, and will
present our design in Section 3. Our current implementation is
described in Section 4. Finally, Section 5 concludes the paper.

2. THE SCALABILITY PROBLEM
2.1 Theoretical Analysis

Scalability is a phenomenon observed in many natural and
artificial systems. We see systems that accommodate components
(or nodes) in a wide range of numbers as being “scalable”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30 & Sept. 3, 2004, Portland, OR, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008…$5.00.

There are two main characteristics for scalable systems:
 Joinability: components or nodes may be added to the system.
 Maintainability: system remains functional after various nodes

enter or leave the system.
Existing resources in any given system is usually finite, and are

consumed at end-point when a new node is added. For example,
bandwidth of existing routers is consumed when adding new routers.
A system is “joinable” only when the accepting node has enough
spare resources. Likewise, maintainability is sustained only when
resource is not depleted after the new node joins. Two more
properties exist to counter resource depletion:

 Resource-growing: useful system resources (i.e. resource at the
accepting nodes) increase with the addition of new nodes

 Decentralized end-point resource consumption: addition of a
node does not consume some “centralized” resource.
Resource-growing is a general strategy found in almost all

scalable systems (reducing consumption works to the same effect).
In the Internet, although additional router consumes bandwidth, it
also contributes new resource to accommodate new routers.
Decentralized resource consumption, on the other hand, is not
necessarily required. As long as resources are available at the
accepting node, system can be “joinable” and “maintainable” even
if it is done in a centralized fashion. For example, in a server-cluster,
as long as server resources (bandwidth and processing capability)
can be increased, then scalability is maintainable [1]. However,
most massively scalable systems (such as Internet) exhibit
decentralized resource consumption.

From the above discussion, we expect that to build a truly
scalable NVE, one that may accommodate more users by orders of
magnitude than existing systems, we need architectures that can
grow its resource, and does not require centralized resource when
additional users join.

2.2 Previous Work
Scalability for NVE generally concerns with whether the system

can accommodate a large number of simultaneous users. Various
approaches have been taken, and generally fall into either the
“increase resource” or the “reduce consumption” categories:
Increase Resource. Using multiple servers for multiple worlds or
using server-cluster to maintain a single world has become a popular
approach, especially for commercial NVEs [1] [14]. For example,
commercial MMOGs are set up with multiple servers for the same
game, each serving a pre-determined maximum number of users.
When a server is full, it simply denies additional connections. Total
number of players can be very large. (For example, a record of
160,000 concurrent users was reported for Lineage in 2002 in
Taiwan.) However, users between different servers may not interact,
and some systems do not even share user profiles. Server-cluster [3],
on the other hand, divides the virtual world into regions or zones,
and supports what appears to users as a single coherent world. Since
server-cluster offers desirable properties, it has become the trend for
building large-scale NVEs. However, server-centered approach is
costly for server-side bandwidth, hardware, and maintenance, which
limits the number of potential NVE developers.
Decrease Consumption. The central theme to this approach is
interest management [12]. While other techniques to economize
bandwidth exist, such as packet compression or aggregation [13],
we consider interest management more relevant. Messages are

generated by user actions and exchanged to maintain consistency
[13]. However, if messages are sent to all other users, the amount of
transmission and processing grows at O(n2), which is clearly not
scalable. Real-world observation tells us that each individual only
has a limited visibility or “sphere of interaction”. In other words, our
interest is localized [12]. Interest management therefore deals with
relevant information filtering, to decrease unnecessary resource
consumption while maintaining adequate interactivity. Early NVEs
did not have interest management, and were set up by hosts
broadcasting messages in the same LAN [13]. To provide interest
management, later systems adopt the client-server model, where
clients send messages to the server, which acts as interest manager
and sends back filtered messages. Interest management can be based
on various criteria. It can be distance-based (by geography), class-
based (by object or user attributes), or some combination of both
[12]. A commonly used concept is Area of Interest (AOI), which
describes a circular or rectangular box centered on the user. Only
messages generated within AOI are relevant to the user (Figure 1).

Figure 1: Each dot represents a user in the virtual world, and
circle represents Area of Interest (AOI) of a particular user.

A common technique in interest management is to divide the
world into various regions. Each user only receives messages
(position update or interaction message) from relevant regions. This
can be done by server-side message filtering, or via network-support
such as multicast [10]. However, region size can be difficult to
determine (Figure 2). If it is larger than AOI, irrelevant messages
are still received; while if it is smaller than AOI, it becomes
inefficient to maintain (e.g. subscribing to too many multicast
address). Ideally, regions would dynamically adjust size and shape
based on current user location. The real challenge then is to create
individualized region that moves with the user.

Figure 2: Difficulty in choosing region size. (L) AOI is smaller
than region. (R) AOI is larger than region.

2.3 Promise and Challenge of P2P NVE
We consider the main challenge in scalability as: how to

construct “resource-growing” and “decentralized consumption” into
an architecture that also exhibits ideal interest management?

Peer-to-peer architecture naturally comes to mind, and appears
to be an attractive alternative to client-server. Each participant
contributes resource to maintain the system without consuming any

centralized resource. It matches with our criteria nicely. P2P
architecture can be made very efficient if we only connect to
relevant users (i.e. those within the AOI). (Keller and Simon
describe this property as keeping Local Awareness [6].) A number
of P2P overlay networks have been proposed in recent years: CAN,
Chord, Pastry [8], and Hypercast [9], to name a few. However, these
overlay networks mainly deal with setting up a distributed hash
table (DHT) that maps keys to values and allows for content-lookup
and retrieval (as in distributed file-sharing). While it is possible to
build NVE on such overlay, as recently proposed by Knutsson et al.
[8], there is overhead associated with using the overlay.

Common questions to all P2P networks are: correct topology
maintenance and efficient content retrieval. Since a single node does
not have knowledge of global topology or content location [7], these
become difficult questions important to any P2P design. For
topology maintenance, there are two issues to consider: whether it is
fully-connected (described by Keller and Simon as the Global
Connectivity property [6]) and whether all nodes have a consistent
view of the topology. Unlike file-sharing P2P, where the desired
content changes with user preference randomly and unpredictably,
for P2P NVE the desired content is easier to identify -- messages
generated by other users within the AOI. If only such messages are
received, then message flow is managed optimally. So the “content
discovery problem” for P2P network translates naturally to a
neighbor discovery problem in P2P NVE.

Neighbor discovery is challenging, because there is a paradox in
maintaining consistency in decentralized systems, as described by
Makbily et al. [11]. At least three recently published papers offer
different solutions: (1) Knutsson et al. describe P2P support for
Massively Multiplayer Games by using Pastry and Scribe, a P2P
overlay and its associated simulated multicast [8]. The virtual world
is divided into regions of fixed-size. Each region is managed by a
promoted node called coordinator, which serves as the root of a
multicast tree. Users inside the same region subscribe to the address
of the root node to receive updates from other users, so neighbors
are discovered via the coordinator. Coordinators maintain links with
each other, facilitating user transition to other regions. (2) Kawahara
et al. describes a fully-distributed scheme where each user keeps
track of a fixed number of nearest neighbors [5]. Nodes constantly
exchange neighbor list with their own neighbors. After sorting
through the list by distance, each node may learn of new nodes and
update existing links. (3) Solipsis [6] is also a fully-distributed
system, where each node attempts to link with all the nodes within
its AOI. Neighboring nodes serve as the “watchmen” for any
approaching foreign nodes. Neighbor discovery is done by
notification from known neighbors.

However, each of them incurs some undesirable properties. In
Knutsson et al., since fixed region size does not reflect true AOI,
users cannot see across regions. If users decide to listen to more
regions, as suggested in the paper, unnecessary messages beyond
AOI will be received. A more serious problem is the performance
penalty incurred by using P2P overlay. As the overlay does not
consider AOI, messages may need to be relayed by other nodes (1
to 2 hops for most cases, but in some cases it goes beyond 50. Note
too that this is “virtual hop”, so more delays happen at the physical
level). In short, the architecture does not fully utilize the power of
direct connections. In the Kawahara et al. approach, direct links are
maintained between neighbors, so hop-count is most efficient (e.g.
one virtual hop). However, constant exchange of neighbor list incurs
network overhead (if 10 nearest neighbors are kept, one exchange

requires receiving updates of 10x10 nodes). The more serious
problem is keeping the topology connected. Since only a finite
number of nearest neighbors are maintained, groups of users may
lose contact to each other if separated by a large distance. The
underlying overlay can thus separate into isolated parts [5]. Solipsis
also uses direct links among neighbors (there is no relay).
Additionally, it requires that each node be inside a convex hull
formed by its neighbors in 2D plane. This way the topology is
guaranteed to be fully connected (i.e. Global Connectivity is kept).
However, inconsistent topology may happen during normal
operation (though rare), since an incoming node may be unknown to
directly connected neighbors, proper neighbor discovery is not
guaranteed (i.e. Local Awareness is not kept, see Figure 3).

Figure 3: Undiscovered node in Solipsis. Lines are connections.
Square node is not discovered as it moves from position 1 to 2.
Topology is inconsistent though fully-connected.

3. VORONOI-BASED P2P NVE

3.1 Design

Figure 4: (L) Voronoi diagram. (R) Square (□): enclosing
neighbors, triangle (∆): boundary neighbors.

In this section, we will explain the design and analysis of our
P2P approach, which is based on a well-studied mathematical
construct Voronoi diagram [4]. Given n points on a plane (each
point called a site), a Voronoi diagram is constructed by partitioning
the plane into n non-overlapping regions that contain exactly one
site in each region. A region contains all the points closest to the
region’s site than to any other site (Figure 4L). The entire plane is
therefore divided into arbitrary sizes in a deterministic way. Voronoi
diagram can be used to find the k-nearest neighbors of a specific site.
By using Voronoi, we may be able to identify enclosing and
boundary neighbors for a given node. Enclosing neighbors are
defined as regions that share a common edge with a given node’s
own region. Boundary neighbors are defined as regions that overlap
with the node’s AOI boundary (Figure 4R). Note that an enclosing
neighbor can also be a boundary neighbor. These properties will
help to solve the neighbor discovery problem described earlier.

The basic idea of our approach is to let each node construct and
maintain a Voronoi diagram, based on the spatial coordinates of
neighbors within the node’s AOI. Each node keeps P2P connections
with all neighbors that constitute the Voronoi. Connections are
therefore based on spatial relationship in the NVE (not physical

network proximity). In our basic model, we assume that all AOIs
are of the same radius, and are determined in an application-specific
manner by the designer. Although a node only knows about a
limited number of neighbors, it can learn of other new neighbors
with the help of its boundary neighbors. Each peer serves as the
“watchman” for one another in discovering approaching neighbors.

When the node moves, position updates are sent to all neighbors
recorded in the Voronoi. If the receiver is a boundary neighbor (as
determined by the sender), an overlap-check is performed. The
receiver checks if the mover, with its new AOI, would enter into
any of its enclosing neighbors’ Voronoi region. The receiver only
notifies the mover if a new overlap occurs (i.e. previously non-
overlapped region becomes overlapped). This allows the moving
node to get aware of potentially visible neighbors outside the AOI
with minimal network overhead (only normal movement message is
used). In case of a node leave or failure, its neighbors simply update
their Voronoi after detection (through a loss of TCP connection or
inactivity timeout). If the leaving user is considered a boundary
node, queries are sent to discover any replacement (Figure 7).

3.2 Procedure
We will describe the basic procedures for joining, moving and

leaving in the P2P NVE. The emphasis of these procedures is to
maintain P2P topology consistency in a message-efficient manner.
Join
1. Joining node contacts the gateway server for a unique ID.
2. Join request is forwarded to acceptor region (defined as the

region that contains the joiner’s coordinates) via neighboring
nodes with simple greedy forward (see Figure 5L).

3. Acceptor node sends back a complete list of its own neighbors.
4. Joining node contacts each neighbor on the list.
5. Joining node builds up a new Voronoi while other nodes update

their Voronoi to accommodate the joining node (see Figure 5R).
Move
1. Moving node sends position coordinates to all neighbors (i.e.

boundary, enclosing, and other neighbors). Messages for
boundary neighbors are specifically marked.

2. Boundary neighbor will check if the moving node’s new AOI
becomes overlapped with any of its enclosing-neighbor’s
Voronoi regions. If so then it sends a notification. (Figure 6L).

3. If a new neighbor is found, the moving node connects to it.
4. Moving node disconnects any boundary neighbors whose

Voronoi region no longer overlaps with its AOI (Figure 6R).
Other actions (jump, chat, trade)
1. Send message to relevant neighbors recorded in the Voronoi.

(For example, a private chat is directed only to neighbor(s) in
the conversation, but an action such as “jump” is sent to all
neighbors that can see the action, i.e., those in the Voronoi.)

Disconnect/Leave
1. Leaving node notifies with a list of its enclosing neighbors.
2. Neighboring nodes affected by the disconnection update their

Voronoi. If the leaving node is seen as a boundary neighbor,
then new boundary neighbors may be assigned.

3. For abnormal departure of boundary neighbor, a request for
enclosing neighbor list is sent to known neighbors to ensure that
topology remains consistent (see Figure 7).

Figure 5: Join procedure. (L) Forward of join request. Circle is
gateway server. Arrow indicates the acceptor node. (R) Triangle
is the new node, shaded regions are neighbors affected by join.
Note that the effect is localized.

Figure 6: Move procedure. (L) Triangle indicates the intended
new position. Squares are new neighbors about to be discovered.
(R) After the move. Squares are the neighbors no longer overlap
with AOI, therefore are disconnected.

Figure 7: Leave procedure. (L) Before node leave, star is the
leaving node. (R) After node leave, triangles (∆) are the new
boundary neighbors discovered with help of existing neighbors.

3.3 Analysis
A qualitative analysis of our current design is given below:

Consistency: In our design, as long as each node correctly keeps
track of at least their enclosing neighbors, there is a guaranteed path
between any two nodes; since discovery is covered in all directions,
no node would be missed. P2P topology is therefore both fully-
connected and consistent provided there is no network failure. Even
if a small number of node fails, the network can still self-repair. This
is an important improvement over existing approaches. Consistency
in event synchronization is not currently guaranteed, because no
“central authority” exists to decide the ordering.
Performance: Transmission hop-count between peers is optimally
efficient as there is no relay. The low latency quality allows for
responsive applications. When users are close to each other, ideal
interest management is achieved (i.e. only messages within the AOI
are received). However, if users are dispersed, connections with
enclosing neighbor beyond AOI are needed to maintain the

topology (Figure 8L). Luckily, on average such neighbors are few,
given Voronoi’s characteristics (six on average [9], but n-1
neighbors in the worst-case, see Figure 8R).

Figure 8: Potential issues with Voronoi. (L) Messages outside of
AOI are still received to maintain P2P topology, but the amount
is expected to be small. (R) Circular line-up of nodes.
There are two inherent disadvantages in the current design. (1) Each
node must send duplicate messages to reach the neighbors, which
requires more bandwidth than client-server (i.e. only one message is
sent). (2) Since no message is processed centrally, aggregation or
compression techniques cannot be leveraged.
Security: We assume all hosts can be trusted.
Scalability: The architecture matches the two criteria for scalable
systems: resource-growing and decentralized consumption.
Persistency: We assume no persistent states in the current model.
Reliability: As long as each node maintains some reliable neighbors,
the system should be able to self-repair inconsistency due to node
failures. However, if a large number of nodes fail simultaneously,
the P2P overlay may still be separated into mutually unaware parts.
However, this is a general problem faced by all P2P networks that
warrants future study.

4. IMPLEMENTATION
There are a number of existing algorithms for constructing and

maintaining Voronoi diagrams [4]. The particular one we implement
is Fortune’s sweepline algorithm [2], which constructs Voronoi in
O(n log n) time. Our design is currently implemented using High-
Level Architecture Run-Time Infrastructure (HLA-RTI) interface,
an IEEE standard originally proposed by the U.S. Department of
Defense. We are investigating the suitability of the standard for
MMOG applications. We name the current implementation
Adaptive Scalable Cooperative Environment for Networked
Dimensions (ASCEND). Our long-term goal is to develop an open
source platform for NVE development.

5. CONCLUSION
We have presented a general picture of the scalability problem

in NVE, and have analyzed requirements for potential solutions. A
promising solution for the difficult neighbor discovery problem is
also presented, by using Voronoi diagram. The general idea of our
solution is to leverage knowledge of each peer about its neighbors to
maintain the position states of all participants. Our solution is simple,
efficient, and close to ideal interest management in NVE. Future
works include variable-size AOI, persistency maintenance and
security mechanism under P2P.

One of the most important concerns for commercial NVE is
security, both for account information and game state authenticity
(e.g. player’s experience points, valuable virtual items). While
accounts can be handled by a central server, user computers are

always prone to hacking. This is the main reason why client-
server is almost universally adopted. We feel that security might
indeed be the main obstacle for commercial adoption of P2P,
despite benefits in performance and cost. However, we believe
that active research can be done to find “good enough” solutions.
On the other hand, this “weakness” can be opportunity for other
areas, such as education or social communities, where social
interactions and collaborations are emphasized over competitions.
One major feature of P2P NVE is its low cost, where scalability
and performance is achieved affordably. For developers with
limited budget, P2P NVE provides a promising alternative.

6. ACKNOWLEDGMENTS
We thank members of the WISE Lab in Tamkang Univ. and

Joaquin Keller for valuable feedbacks, LSCP, Inst. of Physics,
Academia Sinica for their facility, and Dr. Tzu-yang Chen for
proofreading. We are very grateful of the helpful comments by the
anonymous reviewers. We would also like to thank Prof. Wen-Bing
Horng and Dr. Chin-Kun Hu for supporting this work. Special
thanks to Prof. Jiung-yao Huang for introducing NVE to us.

7. REFERENCES
[1] Butterfly.net, Inc. The Butterfly Grid, 2003.

www.butterfly.net/platform
[2] S. Fortune. A sweepline algorithm for Voronoi diagrams.

Algorithmic 2, Pages 153-174. 1987.
[3] T. A. Funkhouser. RING: A Client-Server System for Multi-

User Virtual Environments. In Proc. of the 1995 Symposium on
Interactive 3D Graphics. pp. 85-92, Apr. 1995.

[4] L. Guibas, J. Stolfi. Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams. ACM
Trans. on Graphics, Vol. 4, No. 2, Pages 74-123, April 1985.

[5] Y. Kawahara, T. Aoyama, H. Morikawa. A Peer-to-Peer
Message Exchange Scheme for Large-Scale Networked Virtual
Environments. Telecommunication Systems Vol. 25 Issue 3,
Pages 353–370, 2004

[6] J. Keller, G. Simon. Solipsis: A Massively Multi-Participant
Virtual World. In Proc. of PDPTA 2003. Pg. 262-268. 2003

[7] H. T. Kung, C. H. Wu. Hierarchical Peer-to-Peer Networks.
Technical Report IIS-TR-02-015, Institute of Information
Science, Academia Sinica, Apr., 2001.

[8] B. Knutsson, H. Lu, W. Xu, B. Hopkins. Peer-to-Peer Support
for Massively Multiplayer Games. In INFOCOM, Mar. 2004.

[9] J. Liebeherr and M. Nahas. Application-layer Multicast with
Delaunay Triangulations. In Proc. of IEEE GLOBECOM, Nov.
2001.

[10] M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutzman, P.
T. Barham. Exploiting Reality with Multicast Groups. IEEE
Computer Graphics and Applications, Volume 15, Issue 5,
Pages: 38 - 45, Sept. 1995.

[11] Y. Makbily, C. Gotsman, R. Bar-Yehuda. Geometric
algorithms for message filtering in decentralized virtual
environments. In Proceedings of the 1999 Symposium on
Interactive 3D graphics. Pages: 39 - 46. 1999.

[12] K.L. Morse. Interest Management in Large-Scale Distributed
Simulations. Tech. Report ICS-TR-96-27, UC Irvine, 1996.

[13] S. Singhal and M. Zyda, Networked Virtual Environments:
Design and Implementation. ACM Press, New York, 1999.

[14] Zona Inc. Terazona: Zona application frame work, 2003.
www.zona.net/whitepaper/Zonawhitepaper.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

