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論文名稱： 頁數：63 

以同儕運算為基礎之可擴展式網路型態虛擬環境 

 

校系(所)組別： 淡江大學   資訊工程學系碩士班   A 組 

畢業時間及提要別： 九十三年度第一學期  碩士學位論文提要 

研究生： 胡舜元 指導教授： 陳瑞發 博士 

關鍵字： 網路虛擬環境、同儕運算、多人線上遊戲、Voronoi、

擴展性、有效互動空間管理、VON 

論文提要內容： 

「網路虛擬環境」(Networked Virtual Environment, 簡稱 NVE) 

是整合 3D 圖學及電腦網路的新興領域。它使分散各地的使用

者，能在同一個虛擬空間中即時進行互動。從 80 年代的軍事模擬

到近年來熱門的「多人線上遊戲」(Massively Multiplayer Online 

Game, 簡稱 MMOG) 皆為「網路虛擬環境」之實例。目前多數系

統採用「主從式架構」 (client-server) 為其通訊模式。但主從式架

構之總資源 (運算或頻寬資源) 通常有其上限，若要發展下一代，

可由百萬人同時使用的系統，則會面臨「擴展性」 (scalability) 方

面的問題。 

 

本論文提出一種完全分散、以同儕運算  (peer-to-peer 

computing) 及 Voronoi diagram 為基礎之虛擬網路 (Voronoi-based 

Overlay Network, 簡稱 VON)，來解決「網路虛擬環境」之擴展性

問題。此方式較同類型架構簡易且有效率，並善用虛擬環境中，人

物互動範圍有限之特質。VON 可用來建構高度擴展性、低延遲、

且可容錯的網路虛擬環境。 
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Abstract: 
 

Networked Virtual Environment (NVE) is an emerging discipline 
that combines the fields of computer graphics and computer network to 
allow many geographically dispersed users interact simultaneously in a 
shared virtual environment. From the early military simulation to the 
recently popular Massively Multiplayer (MMP) Online Games, we see 
examples of NVE ever more integrated to aspects of our lives. Currently 
client-server is the predominant architecture for NVE systems, however, 
it faces inherent scalability problem as it usually has a limited total 
amount of system resources (i.e. CPU and bandwidth), which makes it 
unsuitable for constructing a NVE system sharable by millions of users.

 
We propose a fully-distributed peer-to-peer architecture to solve 

the scalability problem of Networked Virtual Environment in a simple 
and efficient manner. Our method exploits locality of user interest 
inherent to such systems and is based on the mathematical construct 
Voronoi diagram. The proposed Voronoi-based Overlay Network 
(VON) allows scalable, responsive, fault-tolerant NVE be constructed 
and deployed in an affordable way. 
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1. Introduction 
 

Computer simulation of real-world environments is an important field that has 
wide applications in military and corporate training, science, education, and 
entertainment. As hardware and software technologies progress, we see ever more 
detailed and realistic simulations. Advances in processing power, network bandwidth, 
and 3D graphical acceleration have enabled a new class of sophisticated networked 
simulations that is visually presented in 3D, and sharable by many users in real-time. 
This emerging field is loosely called Networked Virtual Environment 1[Singhal 99] 
(or NVE for short). Applications of NVE have evolved from military training 
simulation in the 80’s to the recently booming massively multiplayer online games 
(MMOG) in the 90’s.  

 
One important challenge in NVE is to allow as many people as possible to 

interact in the same environment, in a smooth and responsive manner. Allowing 
thousands or even millions of people in the same virtual world creates potential for 
new types of Internet applications and social phenomena. However, while we have 
seen improvements in the scalability of NVE systems, so far there has not been a truly 
massive and scalable NVE that exists on a global scale. 

 
To create a NVE, a number of important issues must be considered, namely: 

 
Consistency / Synchronization - For meaningful interactions to happen, each user’s 
experiences in the virtual world must be more or less consistent. This includes 
maintaining shared states and keeping events synchronized. 

 

Responsiveness - NVEs are simulations of the real world. Responsiveness therefore is 
important for immersion. However, requirements vary between applications (e.g. 
latency less than 200ms is required for a fast-paced first-person computer game, yet up 
to several seconds can be tolerated for a real-time strategy game [Knutsson 04]). 

 

Security - Most NVEs allow people to engage competitively (e.g. combat or treasure 
hunt). User authentication and fairness against cheating therefore are required. In fact, 
this is often the most concerned aspect for commercial NVE developers.  

                                                 
1 Other names include Distributed Virtual Environment (or DVE) [Stytz 96], Collaborative Virtual 
Environment (or CVE), Computer-Supported Collaborative Work (or CSCW). In this thesis we will use 
the abbreviation NVE to describe all networked simulations of virtual worlds. 
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Scalability – Scalability usually concerns with the number of simultaneous users in 
NVE [Singhal 99]. It is important in two respects:  

1. Content possibility. Certain game plays are only realizable when many 
people can participate, such as community and social-oriented game play.  

2. Service availability. Large-scale NVEs are similar to websites, where usage 
may increase dramatically and unexpectedly. Systems will break if they are 
not scalable. 

 

Persistency - To allow sophisticated contents, certain data, such as user profile and 
valuable virtual objects, must be persistently stored and accessed between user sessions. 

 

Reliability / Fault-tolerance – User experience is negatively affected if a simulation 
session suddenly breaks down due to server failure. Reliability is thus important to 
make NVE a service with quality. 

 
We consider scalability as the most important issue if we plan to build truly 

massive worlds and applications, which millions of people can participate and enjoy. 
Therefore, this thesis focuses on finding a feasible solution for the scalability problem 
in NVE that may also be the foundation for solving other issues. 

 
Existing approaches to improve scalability mainly rely on enhancing server 

capacity in client-server architecture. However, client-server architecture has an 
inherent upper limit in its available resource (i.e. processing and bandwidth capacity), 
it is also expensive to deploy and maintained. On the other hand, peer-to-peer (P2P) 
architecture has emerged in recent years as an alternative that promises scalability and 
affordability. Since its introduction, it has become highly publicized by large-scale 
distributed processing application such as SETI@Home [Korpela 01] (a University of 
Berkeley project that allows people around the world to donate spare CPU time to 
analyze astronomical data with a simple screen saver), file-sharing applications such 
as Napster [Napster], Gnutella [Gnutella], FreeNet [Clarke 00], eDonkey [eDonkey], 
and Voice-over-IP (VoIP) application such as Skype [Skype]. 

 
 We attempt to apply P2P architecture to NVE design, in hope that it may solve 
the scalability problem in an efficient way. Our approach uses a mathematical 
construct called Voronoi diagram [Guibas 85] for constructing a unique P2P network 
that supports virtual environment applications. The proposed architecture is called 
Voronoi-based Overlay Network (abbreviated as VON). 



 3

1.1  Thesis statement 
 

Scalable, responsive, and fault-tolerant Networked Virtual Environment can be 
constructed with peer-to-peer architecture based on Voronoi diagram. 

 
1.2  Motivation and goal 
 

We believe that a massive, persistent 3D virtual environment which allows 
millions of people to participate simultaneously may eventually happen on Internet as 
a major communication medium. There are many technical, architectural issues that 
need to be resolved before such a true cyberspace can materialize. Chief among the 
issues is a scalable architecture that accommodates large number of simultaneous 
users. We therefore choose to devise a feasible architecture for constructing scalable 
virtual environments. 

 
We note that peer-to-peer architecture holds better promise to achieve scalability 

than client-server architecture. The goal for this thesis, therefore, is to devise a 
suitable peer-to-peer architecture for constructing NVE that may be scalable to 
millions of users. 
 
1.3  World model and assumptions 
 

In order to simplify the problem for this thesis, we assume that the virtual 
environment is a 2D coordinate space with specific width and height. Events in the 
world are modeled with discrete time-steps. Participants in the NVE consist of many 
computers (referred to as nodes) scattered around the globe. All nodes are connected 
to the Internet and may establish direct TCP connection (a peer-to-peer connection) 
with each other. Each node is identified by a system-wide unique ID and a 2D 
coordinate to indicate its current position. Nodes may change positions and move at a 
certain velocity in any direction at each time-step. 

 
To simplify our analysis, object states (or game states) in a complex virtual 

environment such as MMOG (for example, player health points, virtual items, and 
computer-controlled agents) are not considered. The only state update we consider is 
position update that happens at regular intervals (for example, 5 – 10 times per 
second). Network delay (or latency) is also not considered, and we assume that 
packets are received and processed by the remote nodes immediately after they are 
generated. 
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We also assume that all computers can be trusted (e.g. there are no malicious 
attempts at cheating or non-compliance to the proposed protocols). In other words, 
among the criteria for constructing NVE, we currently do not consider event 
consistency, security, and persistency issues. 
 
1.4  The scalability problem 
 

Scalability is a phenomenon observed in many natural and artificial systems. We 
see systems that accommodate components (or nodes) in a wide range of numbers as 
being “scalable”. There are two main characteristics in scalable systems: 
 

 Joinability: components (or nodes) may be added to the system. 
 Maintainability: system remains functional after various nodes enter or leave 

the system. 
 

Existing resources in any given system is usually finite, and are consumed at 
end-point when a new node is added. For example, when we add new routers to 
Internet, bandwidth of existing routers is consumed. A system is “joinable” only when 
nodes that accept new nodes have enough spare resources. Likewise, maintainability 
is sustained only when resource is not depleted after new nodes join. Two more 
properties exist to counter the problem of resource depletion: 
 

 Resource-growing: useful system resources (i.e. resources at the accepting 
nodes) increase with the addition of new nodes 

 Decentralized end-point resource consumption: addition of a node does not 
consume some “centralized” resource. 

 
Resource-growing is a general strategy found in almost all scalable systems 

(reducing consumption works to similar effect). In the Internet example, although 
adding routers consumes bandwidth, it also contributes new resource that can be used 
to accommodate additional routers. Decentralized resource consumption, on the other 
hand, is a weaker requirement. As long as resources are available at the accepting 
nodes, a system can still be “joinable” and “maintainable” even if it is done in a 
centralized fashion. For example, in a server-cluster, as long as server resources 
(bandwidth and processing capability) can be increased, then scalability is maintained 
[Butterfly 03]. However, such a design can be costly and complicated to maintain in 
practice, and most truly scalable systems (such as Internet) exhibit decentralized 
resource consumption. 
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From the above discussion, we expect that to build a truly scalable NVE, one 
that may accommodate more users by orders of magnitude than existing systems, we 
need architectures that can grow its resource, and does not require centralized 
resource when additional users join. 

 
1.4.1 Problem definition 
 The main problem that we try to address is: given some points (or nodes) moving 
continuously on a 2D plane, each has a radius that defines its Area of Interest (or AOI, 
see Figure 1). If all nodes must exchange messages with nodes within its AOI (called 
AOI neighbors), how can it be done in a scalable and efficient manner? 

 

Figure 1: Concept of Area of Interest (AOI) 

Each dot represents a node in the virtual world, and the circle represents the Area of Interest 
(AOI) of the center node. 

 
1.4.2 Previous approaches 

Scalability for NVE generally concerns with whether the system can 
accommodate a large number of simultaneous users [Singhal 99]. Various approaches 
have been taken, and they generally fall into either the increase resource or the reduce 
consumption categories: 
 
Increase Resource. 

Using multiple servers to host multiple worlds or deploying server-cluster to 
maintain a single world has become a popular approach, especially for commercial 
NVEs [Butterfly 03] [Zona 03]. For example, commercial MMOGs are set up with 
multiple servers for the same game, each serving a pre-determined maximum number 
of users. When a server is full, it simply denies additional connections. Total number 
of players can thus be very large. For example, a record of 160,000 concurrent users 
was reported for the MMOG Lineage in 2002 in Taiwan [NCSoft 04]. However, users 
between different servers may not interact, and some systems do not even share user 
profiles (so users need to create separate accounts on each of the servers). 
Server-cluster [Funkhouser 95], on the other hand, divides the virtual world into 
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regions or zones, and supports what appears to users as a single coherent world. Since 
server-cluster offers good scalability with tight, centralized controls for account and 
security management, it has become the trend for building large-scale NVEs. 
However, server-centered approach requires large investment in server-side 
bandwidth, hardware, and maintenance, which creates significant entry barriers for 
potential NVE developers. 
 
Decrease Consumption.  

The central theme to this approach is interest management [Morse 00]. While 
other techniques to economize bandwidth exist, such as packet compression or 
aggregation [Singhal 96], we consider interest management more relevant. Messages 
are generated by user actions (for example, moving to a particular location) and are 
communicated among nodes to maintain consistency. However, if messages are sent 
to all users in the system, the amount of transmission and processing grows at O(n2), 
which is clearly not scalable. Real-world observation tells us that each individual only 
has a limited visibility or “sphere of interaction”. In other words, our interest is 
localized [Morse 00]. Interest management therefore deals with relevant information 
filtering, to reduce network resource consumption while maintaining adequate 
interactivity. Early NVEs did not have interest management, and were set up by hosts 
broadcasting messages in the same LAN [Miller 95]. To provide interest management, 
later systems adopt the client-server model, where clients send messages to the server, 
which acts as interest manager and sends back filtered messages (i.e. the messages 
that are necessary to maintain synchronization for the client). Interest management 
can be based on various criteria. It can be distance-based (by geography), class-based 
(by object or user attributes), or some combination of both [Morse 00]. The concept of 
AOI is thus central in distance-based filtering. Only messages generated within AOI 
are relevant to the user, and AOI-radius becomes the filtering criterion. 
 

A common technique in interest management is to divide the world into various 
regions. Each user only receives messages (position update or interaction message) 
from relevant regions. This can be done by server-side message filtering, or via 
network support such as multicast [Macedonia 95-1]. However, region size can be 
difficult to determine (see Figure 2). If it is larger than AOI, irrelevant messages are 
received; while if it is smaller than AOI, maintaining regions could be inefficient (e.g. 
subscribing to too many multicast address). Ideally, region size and shape would be 
dynamically adjustable to coincide with a user’s AOI. The real challenge then is to 
create individualized region that moves with the user. 
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(a)       (b) 

Figure 2: Difficulty in choosing region size 

(a) AOI is smaller than region. (b) AOI is larger than region. 
 

1.4.3 Scalability analysis 
We may also look at the scalability problem from a resource-limitation 

perspective. Two main types of resource in NVE systems are the processing (CPU) 
and network (bandwidth) resource. As bandwidth is usually the limiting factor to 
NVE scalability in real systems, we will focus our discussions on network resource. 

 
In any type of expandable system (centralized or distributed), there are always 

some limiting components that pose as the bottleneck. If resource runs out at this 
component, then the system will cease to be scalable. For example, in a client-server 
system, the server is usually the limiting component. For distributed system such as 
P2P, the limiting component is the first node that exhausts its bandwidth capacity. 

 
 We may use graphs to visualize scalable and non-scalable systems. Resource 
consumed at the limiting component usually grows with the size of the system. If the 
consumption increases without limitation, at some point it will exceed the resource 
limit, making the component unable to accommodate more nodes (see Figure 3a). On 
the other hand, if consumption growth may slow down and level off before reaching 
the resource limit, then the system can continue to scale up (see Figure 3b). 

       
(a)       (b) 

Figure 3: Scalability analysis 
X-axis denotes the number of nodes; y-axis denotes resource consumption at the limiting 
component; top horizontal line indicates the resource limit.  
(a) Non-scalable system. (b) Scalable system. 
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1.5 A note on consistency 
 

The concept of consistency is defined differently in different fields of computer 
science. Both NVE and P2P assign different meanings to the term “consistency”. It is 
therefore important to first define what we mean by consistent in the context of 
P2P-based NVE. 
 
 Consistency in NVE generally refers to the idea of event or state synchronization 
(or simply, event consistency): whether various participants of the simulation see the 
same events happening, and whether the events occur in the same order. Zhou et al. 
[Zhou 04] classifies NVE event consistency into two main groups: 
 

- Casual order consistency: Events must happen in the same order as they 
occur, as humans have deeply-rooted concept about the logical order for 
event occurrence. An example is that we would expect to see canon-firing 
before an explosion. If we see explosion (the effect) happens before the 
firing (the cause) then we would feel something “weird” is going on. 

 
- Time-space consistency: In an NVE system, messages are sent to notify for 

position updates. However, due to network latency and clock asynchrony (i.e. 
unsynchronized clocks) on various computers, it is possible for hosts to 
receive updates at different times and interpret the order of event occurrence 
differently (thus also display the entity positions differently). Inconsistencies 
therefore could occur for entity positions at a given logical time.  

 
Note that casual order consistency and time-space consistency are not necessarily 

related to each other (i.e. it is possible to preserve casual order consistency but violate 
time-space consistency). This problem is particularly evident when predications are 
used in place of missing update messages.  
 

On the other hand, the concept of consistency in P2P generally refers to what 
may be called topology consistency, which is whether each node in the P2P system 
holds consistent views of the parts of the network they share (note that each node only 
maintains a local view of the complete topology). Topology consistency is a common 
issue for all P2P applications, which also include P2P file-sharing and distributed 
hash table (DHT, described later in section 2.2.2) applications. On the other hand, 
event consistency is particular to NVE applications. 
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 Consistency in NVE and in P2P, therefore, refers to different concepts, and one 
has to be careful to specify which consistency is in discussion, in the context of a 
P2P-based NVE. It should be noted that in P2P NVE, the two types of consistency are 
related in the sense that topology consistency is a prerequisite for event consistency. 
Also, if entity position is treated as a type of state update, then topology consistency 
can be seen as a subset of event consistency. 
 
 We will distinguish between the two types of consistencies by referring to them 
as event consistency (in the NVE sense of synchronization) and topology consistency 
(in the P2P sense). This thesis focuses on topology consistency, event consistency is 
not currently considered.
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2. Related Work 
 
As our study attempts to solve the scalability problem in NVE with P2P 

architecture, we will now survey existing NVE systems, P2P systems, and some of the 
recently proposed P2P NVE systems. We will focus on their unique characteristics 
and how scalability is addressed in these systems. 
 
2.1 Networked Virtual Environment (NVE) systems 
 
SIMNET 
 SIMNET (simulator networking) [Miller 95] was the original large-scale 
networked virtual environment, developed jointly by the U.S. Army and Defense 
Advanced Research Project Agency (DARPA) between 1983 and 1990. The goal was 
to create a large number of low-cost simulators suitable for combat training. It was set 
up in a LAN environment, with each node broadcasting event updates to all other 
nodes. Scalability of 850 simulated objects was achieved in one exercise [Singhal 99]. 
However, LAN bandwidth would be saturated at a rate of O(n2), making scalability 
expensive and costly to maintain. 
 
NPSNET 
 NPSNET [Zyda 92, Macedonia 95-2] is the long-standing academic NVE project 
at U.S. Navel Postgraduate School (NPS) that began in 1987. Like SIMNET, its goal 
is also to develop virtual environment technologies suitable for military purposes. The 
project has a comprehensive scope that addresses many NVE-related research topics 
such as scalability, extensibility, interoperability, visualizations, computer-controlled 
agents, and human-computer interactions.  
 

The main contribution from the NPSNET project on scalability is the proposal to 
use multicast as a filtering infrastructure for large-scale NVE [Macedonia 95-1]. The 
idea is to partition the virtual environment into many fixed-size regions, each assigned 
a unique multicast address. As entities (nodes) move inside the environment, they 
would subscribe to various multicast addresses that correspond to regions within the 
node’s AOI. This way the amount of message received will be reduced significantly to 
those within the current area of interest (see Figure 4). 
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Figure 4: NPSNET region division (source: [Macedonia 95-2]) 

Each hexagon cell represents a region associated with a multicast address. Entities subscribe to 
all the cells that are within its Area of Interest (AOI, indicated by the white cells).  

 
The main problem with the multicast approach is that it has not been widely 

deployed on Internet, and with fixed-size region, there is always the problem of 
determining the appropriate region size (refer back to Figure 2 in section 1.4.2). If too 
many nodes are present in the same region, then crowding could cripple the system 
(see section 3.2.5). 
 
RING 
 To address the resource limitation on a single server, Funkhouser proposed RING 
in 1995 [Funkhouser 95]. RING was the first attempt in using multiple servers to host 
a single NVE, laying the foundation for future variants of the server-cluster approach 
(see Figure 5). With multiple servers, each manages a pre-specified partition (a region) 
of the virtual environment, computational and bandwidth load are effectively spread 
out across the servers (assuming users are distributed evenly in the virtual 
environment). To facilitate user transfer when they move across different regions, 
each server would maintain contacts with one another over a high-speed LAN. 

 

Figure 5: Server-cluster architecture (source: [Funkhouser 95]) 
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Server-cluster has become the practical solution to address scalability to date. 
However, with high system complexity and maintenance cost (a large amount of 
bandwidth is required at the server-side to support many users, which could be costly), 
only organizations with sufficient budget and resource could afford it. 
 
MiMaze 
 To address the inherent limitation of server-side network resource, Diot et al. 
proposed a fully-distributed architecture on multicast Internet (i.e. the MBone 
infrastructure) to improve scalability and responsiveness of NVE systems [Diot 99]. 
The main contribution of MiMaze, however, was not a demonstration of scalability, 
but the experimental studies to maintain event consistency in a distributed 
environment by using bucket synchronization (see section 5.3.3). Although scalability 
was not focused in the study (MiMaze only uses a single multicast address, with 
around 25 nodes in the experiment), bucket synchronization may be useful and 
applicable to distributed system such as P2P. 
 
Massively Multiplayer Online Games (MMOG)  
 In mid-1990s, commercial companies began to launch games that allow 
thousands of players to participate in the same virtual universes. Ultima Online [UO], 
Everquest [EQ], Asheron's Call [AC], and Lineage [Lineage] are a few of the most 
well-known online games. Current generation MMOG adopts the server-cluster 
architecture, where each server manages one region or zone. When users move 
between zones, user profile is transferred from one server to another, causing a 
temporary delay. Asheron’s Call was the first MMOG to provide zoneless transition 
where the user would not experience delay when transferring to a different zone. It is 
likely achieved by pre-fetching user data as the user approaches the zone border. 
  
 Each server in a cluster can accommodate between a few hundreds to a few 
thousand users, allowing the total number of users in a single game to exceed 10,000. 
As MMOG are for commercial purpose, security is of strong concern to ensure 
fairness. Users usually do not have control over the calculations of game states. 
Instead, they send in event updates to the server, where the consequence of action 
commands are calculated and validated. The results are then sent to notify other users 
who are affected. As client machines may be malicious and cannot be trusted, all 
player data are stored at server-side databases. Thus, besides message filtering, the 
server also validates actions, detects collisions, and manages persistent data. 
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2.2 Peer-to-peer (P2P) systems 
 
Peer-to-peer systems can be described as “distributed systems without any 

centralized control or hierarchical organization, in which each node runs software 
with equivalent functionality” [Stoica 03]. Many P2P systems have emerged in recent 
years, which include distributed processing, distributed file sharing, distributed hash 
table (DHT), among others. Compared to client-server architecture, P2P offers certain 
desirable traits: 

 
 Scalability: as nodes join the system, they also bring in resource instead of 

simply consume existing resource. The distributed nature also may prevent 
any one node from overloading and becoming the bottleneck of scalability. 

 
 Affordability: most P2P systems can be constructed using commodity 

hardware without requiring expensive servers or server-side bandwidth. 
 

 Fault-tolerance: as there is no centralized authority in the system, true P2P 
systems do not have the single-point of failure problem in client-server 
architecture. The system may still function even if some nodes fail. 

 
Peer-to-peer systems are constructed by connecting various computers (nodes) in 

a mesh-like fashion (see Figure 6) to form a virtual network on top of the physical 
Internet. The term overlay network is thus used to describe peer-to-peer systems (we 
will use the term peer-to-peer and overlay network interchangeably in this thesis).  

 

 
Figure 6: A peer-to-peer overlay network (source: [Keller 03]) 

 
 We will next briefly describe two types of the popular P2P systems: file-sharing 
and Distributed Hash Table (DHT). 
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2.2.1 File-sharing systems 
 
Napster  

Napster [Napster] was the first widely used P2P file-sharing network that allows 
the sharing of music files. Although file-transfer is done between peer computers, 
file-discovery requires querying a centralized server. The server maintains a directory 
of the locations of each file currently shared on the P2P network. As centralized 
servers are used, Napster is not fully-distributed and thus faces some of the same 
problems as client-server: inherent upper limit to server-side resource (e.g. limited 
scalability) and a single-point of failure. 
 
Gnutella 
 Gnutella [Gnutella] attempts to address Napster’s single-point of failure problem 
by adopting a fully-distributed architecture. Each node in the Gnutella network 
maintains a contact list of other nodes. When users try to find a particular file, the 
search request is broadcasted (on the overlay network) to its list of contacts. If the file 
is not found, the contacts would forward the request to their own list of contact nodes. 
The search request thus spreads through the network in a ripple-like fashion. To avoid 
over-flooding the network, each request is attached a time-to-live (TTL) value, and is 
dropped when the value reaches 0 (e.g. the search is being given up). 
 
 Although Gnutella avoids having a single-point of failure, its broadcasting nature 
is time-consuming and wasteful. It trades efficiency with fault-tolerance capability, 
yet still does not pose to be truly scalable. 
 
2.2.2 Distributed Hash Table (DHT) 

To address the non-scalable nature of existing file-sharing P2P, a number of 
academic P2P overlays have been proposed in recent years: CAN [Ratnasamy 01], 
Chord [Stoica 03], Pastry [Rowstron 01], Tapestry [Zhao 04] and Hypercast [Liebeherr 
02], to name a few. These overlay networks mainly deal with setting up a distributed 
hash table (DHT), which provides the function of mapping any given key to a node, 
and allows for efficient, robust content-lookup (which are required for file-sharing). 
However, virtual environments have different requirements, and DHT would not 
address effectively the problems in NVE. While DHT may be efficient at querying the 
location of a piece of data, it does not support frequent message exchange (or updates) 
which is necessary to provide interactivity. While it is possible to build NVE on top of 
DHT, as proposed by Knutsson et al. [Knutsson 04], it would incur certain overhead 
and latency (to be discussed next in section 2.3.1). 
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2.3 P2P-based NVE 
 
 Common questions to all P2P networks are: correct topology maintenance and 
efficient content retrieval. Since a single node has no knowledge of global topology or 
content location [Kung 01], these two issues are the central challenges to any P2P 
design. For topology maintenance, two aspects must be considered: whether it is 
fully-connected (described by Keller and Simon as the Global Connectivity property 
[Keller 03]) and whether all nodes have a consistent view of the topology (i.e. whether 
the local topology views of all nodes agree with each other and may merge into a 
globally consistent topology. A similar concept was described by Keller and Simon as 
Local Awareness [Keller 03], which indicates whether a node is aware of all its 
AOI-neighbors). Unlike file-sharing P2P, where the desired file may be located on any 
node according to user preference, in P2P NVE the desired content is more specific –– 
messages generated by other users within the AOI. If only such messages are received, 
then message flow is managed optimally. The “content discovery problem” in P2P 
systems, therefore, translates naturally to a neighbor discovery problem in P2P NVE. 
Efforts to apply P2P on NVE began around 2002, with publications appearing in 2004. 
Below we describe three of the main proposals to the neighbor discovery problem. 
 
2.3.1 SimMud (University of Pennsylvania) 

Knutsson et al. describe P2P support for Massively Multiplayer Games by using 
Pastry and Scribe, a P2P overlay and its associated simulated multicast [Knutsson 04]. 
The virtual world is divided into regions of fixed-size (see Figure 7). Each region is 
managed by a promoted super-node called coordinator, which serves as the root of a 
multicast tree. Users inside the same region subscribe to the root node to receive 
updates from other users, so neighbors are discovered via the coordinator. Coordinators 
maintain links with each other, facilitating user transition to other regions 
 

 
Figure 7: Fixed-size regions in SimMud (source: [Knutsson 04]) 
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However, since fixed region size does not reflect user AOI, users cannot see across 
regions. If users decide to listen to more regions, as suggested in the paper, irrelevant 
messages beyond AOI will be received. If too many users crowd inside the same region, 
then the coordinator may be overloaded. A more serious problem is the latency penalty 
incurred by using the P2P overlay. As the overlay is not designed around the concept of 
AOI, message updates may need to be relayed by other nodes (less than 6 hops in most 
cases, but exceed 50 in other cases – a delay up to several seconds. Note that this is 
“virtual hops” on the P2P overlay, so it translates to more hops at the physical level). In 
short, the architecture does not fully utilize the true power of P2P –– direct connections. 

 
2.3.2 Neighbor-list exchange (University of Tokyo) 

Kawahara et al. describes a fully-distributed scheme where each user keeps track 
of a fixed number of nearest neighbors [Kawahara 04]. Nodes constantly exchange 
neighbor list with their own neighbors (see Figure 8). After sorting through the list by 
proximity, each node may learn of new nodes and update its connection relationship (to 
reflect current topology). 

 

Figure 8: Neighbor-list exchange scheme (source: [Kawahara 04]) 

Neighbors (A1, A2, A3, A4) exchange neighbor list with the center node. 

 
In this approach, direct links are maintained between neighbors, so transmission 

latency is minimized (e.g. messages are exchanged directly, not relayed through 
intermediate nodes like SimMud). However, constant exchange of neighbor list incurs 
network overhead (if 10 nearest neighbors are kept, one exchange requires receiving 
updates of 10x10 nodes). The more serious problem is keeping the topology 
fully-connected. Since only a finite number of nearest neighbors are maintained, groups 
of users may lose contact to each other if separated by a large distance. The underlying 
overlay can thus separate into isolated parts (an overlay partition) [Kawahara 04]. 
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2.3.3 Solipsis (France Telecom R&D) 
Solipsis [Keller 02, Keller 03] is also a fully-distributed system, where each node 

attempts to link with all the nodes within its AOI. Neighboring nodes serve as the 
“watchmen” for any approaching foreign nodes. Neighbor discovery is done by 
notification from known neighbors. 

 

Figure 9: Design of Solipsis (source: [Keller 03]) 

Solipsis requires that all nodes are within a convex hull formed by neighboring nodes. In the figure 
above, (a) matches the requirement while (b) violates the requirement. 

 

Like the neighbor-list exchange scheme, Solipsis also maintains direct links among 
neighbors (latency is thus minimized). Specifically, it requires that each node be inside 
a convex hull formed by its neighbors in 2D plane (see Figure 9a). This way the 
topology is guaranteed to be fully connected (i.e. Global Connectivity is kept). However, 
inconsistent topology may happen during normal operation occasionally, since an 
incoming node may be unknown to directly connected-neighbors, proper neighbor 
discovery is thus not guaranteed (i.e. Local Awareness is not kept, see Figure 10a). In 
some other cases, proper neighbor discovery could be slow as it may require a few 
queries (see Figure 10b). 

        

(a)       (b) 

Figure 10: Potential discovery problems in Solipsis (source of (b): [Keller 03]) 

(a) Lines indicate connections. Square node is not discovered as it moves from position 1 to 2. 
Topology becomes inconsistent even though it is fully-connected and compiles to Solipsis’ design. 
(b) It may take node e a few queries before properly discovering node ei in the north.
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3. Voronoi-based P2P NVE 
 
We now describe the design and analysis of our P2P approach, which is based on a 

well-studied mathematical construct Voronoi diagram [Guibas 85, Aurenhammer 91]. 
We first explain what a Voronoi diagram is, then explain the design of our proposed 
architecture – Voronoi-based Overlay Network (VON). An analysis of VON’s design is 
then provided, including comparisons with other P2P NVE systems and some problems 
in the current design. We conclude this part with some implementation considerations. 
 
3.1  Voronoi diagram 
 

Given n points on a plane, (each point called a site), a Voronoi diagram is 
constructed by partitioning the plane into n non-overlapping regions that contain 
exactly one site in each region. A region contains all the points closest to the region’s 
site than to any other site (see Figure 11a). The entire plane is therefore divided into 
arbitrary sizes in a deterministic way. Voronoi diagram can be used to find the k-nearest 
neighbors of a specific site. By using Voronoi, we can identify enclosing and boundary 
neighbors for a given site. Enclosing neighbors are defined as sites whose regions share 
a common edge with the given site’s own region. Boundary neighbors are defined as 
the sites whose regions overlap with the site’s AOI boundary (see Figure 11b). Note that 
an enclosing neighbor may also be a boundary neighbor. These properties will help to 
solve the neighbor discovery problem described earlier. 

 

  
(a)        (b) 

Figure 11: Voronoi diagram 

(a) The dots indicate sites, and lines define boundaries for regions. (b) Squares (▓) represent 
enclosing neighbors; triangles (▲) represent boundary neighbors; stars (★) are both enclosing and 
boundary neighbors; circle (●) represents a regular AOI-neighbor. 
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There exist a number of algorithms to construct Voronoi diagrams [Gowda 83, 
Dwyer 86, Fortune 86]. Most can construct a Voronoi diagram with O(n log n) time 
complexity given a number of sites. However, for our purpose, the specific 
construction method is not the focus of this thesis, and we assume that stable 
algorithms to construct Voronoi diagram exist and can be readily used. 
 
3.2 System design 
 
3.2.1 Overview 

The basic idea of our approach is to let each node construct and maintain a Voronoi 
diagram, based on the spatial coordinates of neighbors within the node’s AOI. Each 
node keeps P2P connections with all neighbors that constitute the Voronoi sites. 
Connections are based on spatial relationship in the NVE (not physical network 
proximity). Each node must minimally maintain all its enclosing neighbors to ensure 
that topology is fully-connected. In our basic model, we assume that all AOIs are of the 
same radius (a dynamic-AOI variation is described later in section 3.2.5), and are 
determined in an application-specific manner by the designer. Although a node only 
knows a limited number of neighbors, it can learn of other new neighbors with the help 
of its boundary neighbors. Each peer serves as the “watchman” for one another in 
discovering approaching neighbors. 

 

When the node moves, position updates are sent to all neighbors maintained in the 
Voronoi. If the receiver of the update is a boundary neighbor (as determined by the 
sender), an overlap-check is performed. The receiver checks if the mover, with its new 
AOI, would enter into any of its enclosing neighbors’ Voronoi regions. The receiver 
only notifies the mover if a new overlap occurs (i.e. previously non-overlapped region 
becomes overlapped). Receivers may also notify the mover if the mover has any new 
enclosing neighbors, to ensure that enclosing neighbors are maintained by each node at 
all times. The moving node may thus be aware of potentially visible neighbors outside 
its AOI with minimal network overhead (because no query messages are involved in 
neighbor discovery, and messages are exchanged only when necessary. In a way, the 
queries are embedded in the position updates). In case of a node leave or failure, its 
neighbors simply update their Voronoi after detection (through a loss of TCP connection 
or inactivity timeout). If the leaving node is a boundary neighbor, replacements are 
notified by the still-connected boundary neighbors during the next position update. 
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We will next describe the procedures for node joining, moving and leaving in 
VON. The emphasis is to maintain P2P topology consistency in a message-efficient 
manner.  
 

Before we show the actual procedures, Table 1 describes the notation and 
definition for the pseudocode that describes the implementation details. Pseudocode for 
the JOIN, MOVE, and LEAVE procedures are given in Figure 13, Figure 16, and 
Figure 18, after the textual descriptions for each procedure. 
 

Table 1: Definition and notation for the pseudocode 

 
Variables for node n Description 
id     node n’s unique ID 
aoi     node n’s AOI-radius 
pos     node n’s coordinates (x and y) 
neighbors   a list of the neighbors that node n maintains 
 
Basic functions for n Description        Returns 
contains(pos)   if pos is within n’s Voronoi region    true/false
overlaps(node)  if n’s AOI overlaps with node’s Voronoi region true/false
closest(pos)   the neighbor with shortest distance to pos  node_id 
is_EN(id)    if node id is an enclosing neighbor of n   true/false
is_BN(id)    if node id is a boundary neighbor of n   true/false
knows(id)   if node id is a currently known neighbor of n  true/false
insert(node)    store node’s id, aoi, and pos to neighbors  none 
delete(id)    remove the node id from neighbors   none 
update(node)   updates a node’s aoi and pos     none 
 
 

Note 1: in the following pseudocode, if node n is sent as a parameter, only its id, 
aoi, pos are sent, its neighbors is never sent in order to conserve bandwidth. 
 
Note 2: the basic functions insert, delete, and update maintain the Voronoi diagram 
for a particular node n. 
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3.2.2 JOIN procedure 
1. Joining node contacts the gateway server for a unique ID. 

2. Joining node sends a join request with its own coordinates to any existing node 
(which can be the gateway server). 

3. Join request is forwarded to the acceptor region (e.g. the region that contains the 
joiner’s coordinates) via neighboring nodes with greedy forward (see Figure 12a). 

4. Acceptor node sends back a complete list of its own neighbors. 

5. Joining node contacts each neighbor on the list. 

6. Joining node builds up a new Voronoi while the contacted nodes update their 
Voronoi to accommodate the joining node (see Figure 12b). 

    

(a)        (b) 

Figure 12: JOIN procedure 

(a) Forward of join request. Circle is gateway server. Arrow indicates the acceptor node. (b) Triangle 
(▲) is the new node, shaded regions are neighbors affected by join. Note that the effect is localized. 
 

// enters p2p overlay given an initial gateway 

n.join(gateway) 

id = gateway.assign_id(); 

gateway.query(n); 

 
// send my list of neighbors if I am the acceptor
// otherwise forward the query request 
n.query(node) 

if(contains(node.pos)) 

    node.notify(neighbors); 

  else 

    n' = closest(node.pos); 

    n'.query(node); 

// unique-ID assignment (gateway only) 

n.assign_id() 

id_counter++; 

return id_counter; 

 

// notify a node of a list of nodes it should know 

n.notify(node_list) 

for each node in node_list 

if(contains(node.pos)) 

insert(node); 

node.insert(n); 

 

Figure 13: Pseudocode for the JOIN procedure 
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3.2.3 MOVE procedure 
1. Moving node sends position coordinates to all neighbors (i.e. boundary, enclosing, 

and AOI-neighbors). Messages to boundary neighbors are specifically marked. 

2. Boundary neighbor checks if the moving node’s new AOI overlaps with any of its 
enclosing-neighbors’ Voronoi regions (see Figure 14a) or if the moving node comes 
to contact with any new enclosing neighbor (see Figure 15). If so then it sends a 
notification. 

3. If a new neighbor is found, the moving node connects to it. 

4. Moving node disconnects any boundary neighbors whose Voronoi region no longer 
overlaps with its AOI (see Figure 14b). 

 

     
(a)        (b) 

Figure 14: MOVE procedure 

(a) Triangle (▲) indicates the intended new position. Squares (▓) are new neighbors about to be 
discovered. Stars (★) are the boundary neighbors (b) Crosses (╳) are the neighbors no longer 
overlap with AOI, therefore are disconnected. 

 

   
(a)       (b) 

Figure 15: MOVE procedure (notification due to new enclosing neighbor) 

(a) The moving node’s AOI does not overlap with any of its enclosing neighbors, yet connections 
are still maintained due to protocol requirement. (b) The moving node is notified of a new 
enclosing neighbor (the shaded region) by its existing enclosing neighbors. Note that its AOI does 
not overlap with the new neighbor. 



 23

 
 
 

 
// move to a new position (specified by new_pos) 

n.move(new_pos) 

pos = new_pos; 

adjust_aoi();   // explained later in section 3.2.5 

remove_nonoverlapped(); 

for each node in neighbors 

if(is_BN(node)) 

      node.has_moved(n, true); 

else 

node.has_moved(n, false); 

 

// remove neighbors that no longer overlaps with n’s AOI 

n.remove_nonoverlapped() 

for each node in neighbors 

    if(overlaps(node) is false) 

remove(node); 

node.remove(n); 

 

// tell a neighbor of my new position, this neighbor will check for neighbor discovery 

n.has_moved(node, notify_flag) 

update(node); 

if(notify_flag is true) 

for each enclosing_neighbor in neighbors 

      if( (node.overlaps(enclosing_neighbor) or node.is_EN(enclosing_neighbor)) 

and node.knows(enclosing_neighbor) is false 

node.notify(enclosing_neighbor); 

 

Figure 16: Pseudocode for the MOVE procedure 



 24

3.2.4 LEAVE procedure 
1. Leaving node simply disconnects (there is no distinction between proper and 

abnormal departures from the overlay network). 

2. Neighboring nodes affected by the disconnection update their Voronoi. If a 
boundary neighbor leaves, replacements may be learned via still-connected 
boundary neighbors (see Figure 17). 

 

      

(a)       (b) 

Figure 17: LEAVE procedure 

(a) Before node leave, cross (╳) is the leaving node. (b) After node leave, triangles (▲) are the new 
boundary neighbors discovered with help of still-connected boundary neighbors (Squares ▓). 
 
 

 
// let all my neighbors update their Voronoi by removing me 
n.leave() 

for each node in neighbors 

node.remove(n); 
 

Figure 18: Pseudocode for the LEAVE procedure 
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3.2.5 Dynamic AOI adjustments 
In real-world applications, objects or events of interest may cause certain parts of 

the map to have a high density of users (i.e. a crowding situation, see Figure 19. It is 
similar to the flash crowd effect in websites). The fixed-size radius of AOI in our basic 
model will not accommodate such situation, and nodes may become overwhelmed by 
connections or messages as the density of neighbors increase within their AOI. 

 

Figure 19: Example of a crowding situation 

 To address this problem, we propose an enhancement to the basic algorithm by 
adjusting AOI-radius dynamically in real-time. We specify for each node, a maximum 
number of allowable connections, then adjust the AOI-radius to ensure that this limit 
does not exceed by the actual number of connections. The adjustment conditions are: 
 

 AOI-radius decrease condition 
- Number of currently-connected neighbors exceeds the maximum number of 

allowable neighbors 
 AOI-radius increase condition 

- Number of currently-connected neighbor does not exceed maximum number 
of allowable neighbors. 

- Current AOI-radius is less than the preferred (e.g. the initial) radius. 
 

These two simple rules will help to maintain a balance on the connection size for 
each node in the P2P network (see Figure 20 for the pseudocode). 
 

n.adjust_aoi() 

  if(sizeof(neighbors) greater than connection_limit) 

    decrease aoi; 

  else if(aoi less than preferred_aoi_radius) 

increase aoi; 
Figure 20: Pseudocode for dynamic-AOI adjustments 
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3.2.6 The VON protocol 
The above procedures are realized as a set of protocols. The basic data structure 

is shown in Table 2. Table 3 describes the message commands and their functions. 
 

Table 2: The VON data structure 
(Number inside bracket indicates the number of bytes used) 

Data type Components Purpose 
ID Unique-id (4) To identify each node uniquely 

POS x (4), y (4) To identify a position in virtual environment 

ADDR IP-address (4), port (4) The address and listen port of a node 

AOI AOI-radius (4) The AOI-radius of a particular node 

 
Table 3: The VON protocol 

(Parameters inside the square bracket indicate that they are sent as a list.) 

Command Parameters Return Function 
ID ID  Unique ID assigned by gateway server 

GREET ID  Allow a connection-accepting node to 
understand the identity of a remote node 

QUERY ID 

POS 

ADDR 

NODE 

(acceptor’s 

own neighbors)

Sent by the joining node to indicate its 
initial position, in order to find the 
acceptor region. This command will be 
forwarded if the Voronoi region of the 
processing node does not contain the 
entry point. The address is used by the 
acceptor to contact the joining node. 

HELLO POS 

AOI 

ADDR 

HELLO Handshake by two nodes that try to 
establish connections with each other. 
(sent after GREET) 

EN [ID] NODE 

(missing 

neighbors) 

A list of unique-IDs of enclosing 
neighbors. Used after HELLO to check 
for missing neighbors (see section 3.2.7) 

MOVE POS 

AOI 

 Notifying connected-neighbor of the 
current position and AOI-radius 

MOVE_B 

MOVE_BD 

POS 

AOI 

NODE 

(new 

neighbors) 

Same as MOVE, but sent to boundary 
neighbors, which will then check for 
potential neighbor discovery. See section 
3.2.7 for a description of MOVE_BD. 

NODE [ID  

POS 

ADDR] 

 Information about a particular node, for 
connection-establishing purpose. 
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3.2.7 Procedure enhancements 
There are some situations where the above procedures do not work as correctly 

as expected, therefore some enhancements to the basic procedures are required. We 
discuss some of the enhancements below. 

 
JOIN procedure enhancement 

A fine-point in the JOIN procedure deserves some emphasis. The neighbor sets 
of the acceptor and the joining node (the joiner) may not be exactly the same in some 
cases (see Figure 21), and will cause incomplete neighbor discovery for the joiner.  
 

   
(a)       (b) 

Figure 21: Dissimilar neighbor sets for acceptor and joiner 

(a) Node A does not appear on the neighbor list for the acceptor node (circle). (b) However, Node 
A is a neighbor for the joining node (triangle). The neighbor list returned by the acceptor is not 
complete for the joining node. 
 

To remedy this situation, we add an additional procedure when nodes initiate 
connections to newly discovered neighbors. It will send a list of the enclosing 
neighbors of the node to be contacted, so that the contacted node may check for any 
missing nodes from its enclosing neighbor set. This is presented as the EN command 
in the VON protocol (see Table 3 in section 3.2.6). This additional procedure will add 
some overhead to the VON protocol. However, the frequency is limited to only when 
establishing a new connection. Also, it will provide the additional benefit of fixing 
inconsistent local views of the topology among neighbors. If we assume each node 
knows its enclosing neighbors correctly, then this “fixing mechanism” will provide 
robustness to topology maintenance. 
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Dynamic AOI adjustments enhancement 
When a node decides to shrink its AOI-radius, it may disconnect certain nodes 

that still consider the node as their AOI neighbors. This will cause inconsistencies in 
those other nodes with larger AOI-radii (see Figure 22) 
 

 
Figure 22: Topology inconsistency due to dynamic-AOI adjustment 

The square node shrinks its AOI-radius (from the thinner to the thicker AOI) and disconnects the 
triangle node. The triangle node then has an incomplete/incorrect view of the topology. 

 
To avoid inconsistent views of the topology, one possible solution is for the 

affected (i.e. disconnected) nodes to immediately shrink their AOI-radii, so that the 
initial AOI-shrinking node (i.e. disconnecting node) falls outside the AOI of the 
affected nodes. Topology consistency of the nodes being disconnected therefore will 
not be adversely affected. 
 

We introduce the MOVE_BD message to the VON protocol as an enhancement 
to the MOVE_B message (which is used to notify boundary neighbors of position 
updates, see section 3.2.6). MOVE_BD is sent to those boundary neighbors that will 
be disconnected in the next time-step. Receivers of the message can therefore 
anticipate a possible future disconnection and shrink their AOI-radii preventively. 

 
This remedy, however, will lower the number of visible nodes of the affected 

node when it has not yet reached its connection limit. It may or may not be desirable 
depending on the application type. A better solution is the topic for future research.
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3.3 Design analysis 
 

We will now analyze how VON matches the six criteria for NVE outlined earlier 
(see Introduction and section 1.5), in order to emphasize its specific characteristics 
and compare against other approaches. Currently identified problems with the 
Voronoi-based approach are then discussed. 
 
3.3.1 Criteria for NVE construction 
 
Topology consistency 
 We will discuss topology consistency in two aspects: whether the topology is 
fully-connected (e.g. Global Connectivity is kept) and whether each node shares 
consistent views of the world (e.g. Local Awareness is achieved properly).  
 

Global Connectivity is kept as long as each node properly maintains its enclosing 
neighbor set. An intuitive explanation is that enclosing neighbors completely cover a 
node, therefore, if the set is kept, a node will always maintain links with at least some 
nodes in the P2P overlay. In fact, overlay partition itself indicates that enclosing 
neighbors are not kept properly. 

 
Consistent views (or proper Local Awareness) are maintained as long as neighbor 

discovery is complete. This will happen if the procedures for JOIN/MOVE/LEAVE 
are followed correctly. The reason is that the combined Voronoi regions of all AOI 
and boundary neighbors, by definition, fully cover a node’s AOI boundary. Any 
neighbor further away cannot enter the AOI-radius without first colliding with the 
boundary neighbor set (and become the boundary neighbors’ enclosing neighbor). If 
the MOVE procedure is followed properly, then a node would be notified for all 
approaching unknown neighbors by its boundary neighbors (note that these unknown 
neighbors necessarily will become the enclosing neighbors of the boundary neighbors, 
if all boundary neighbors properly maintain their enclosing neighbor sets). The 
completeness of neighbor discovery is thus guaranteed. 

 
However, neighbor discovery may become incomplete in the following cases: 
 

1) When the acceptor and the joiner have different sets of neighbors. 
2) When a node is disconnected due to AOI-radius shrinking. 
3) When nodes are moving too fast. 
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Case 1) and 2) have been discussed and given solutions in section 3.2.7, also 
note that case 2) does not happen in the basic model (when AOI-radius is fixed). We 
consider case 3) an implementation issue and will discuss it in section 3.4.2. As will 
be shown in next part, the current design of VON is able to maintain a high-level of 
topology consistency. 
 
Responsiveness 
 Responsiveness in an NVE system is influenced by many factors: hardware 
systems, software architecture, graphical subsystem, network subsystem, simulation 
complexity, etc. Many elements related to the responsiveness of an actual system are 
strongly depended on the implementation. Therefore, we only focus on the theoretical 
aspect of VON’s design. In particular, we will define responsiveness in terms of the 
number of virtual hops a message travels before reaching its destination. 
 
 Here it is clear that due to the design of direct-connection between peers, VON 
achieves a hop-count of 1 for the whole system. Transmission latency is therefore 
minimized. Note that this hop-count is measured in terms of P2P topology, not the 
hop-counts of actual physical network links. A message could travel a number of hops 
physically before reaching its actual destination. However, this is the best scenario 
achievable in a NVE context, because users are necessarily scattered on the physical 
network, yet we cannot move them arbitrarily to optimize the network traffics. 
 
Security 
 Security is an important and serious consideration for many applications of NVE, 
especially for commercial MMOG. However, it is also an inherently difficult problem 
in distributed systems such as P2P. As users have full access to the software system 
and network traffic, they could hack message packets and create modified software 
that acts maliciously. Some of the security issues for VON include: 
 

1) Uncooperative hosts: correct P2P topology requires cooperative nodes to 
maintain, or neighbor discovery could become incomplete or incorrect. An 
uncooperative host could send out incorrect discovery information or refuse 
to notify relevant nodes, making the topology inconsistent.  

 
2) Game state manipulation: For the various game states that are stored and 

exchanged among peers, a cheating node could artificially modify game 
states to the cheater’s advantage. 
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As we note that security is a difficult problem, yet it is possible to solve other 
aspects of the P2P NVE first (such as scalability), therefore, we choose not to 
consider security issues in the present work. 
 
Scalability 

VON’s design matches the characteristics of scalable systems, namely: 
resource-growing and decentralized resource-consumption. With dynamic AOI 
adjustment, a node requires only a fixed amount of network resource to operate. This 
characteristic allows any number of nodes to join the system as no node can become 
the “bottleneck” for the system. We will demonstrate VON’s scalability with 
simulation results in section 4. 
 
Persistency 
 We define persistency as the storage and maintenance of certain game states 
across user sessions. Persistency is also not considered in the present work. As a result, 
the applicability of our proposed system is limited. Certain applications that require 
persistency, such as commercial MMOG, cannot adopt the present architecture. 
However, there are other works that deal with persistent data storage on P2P network, 
such as OceanStore [Kubiatowicz 00]. We believe that persistency can be achieved 
with VON and this will be an important topic for future research (see section 5.3.4).  
 
Reliability 
 We will define reliability as whether the P2P NVE can sustain node failures and 
remain functional, and whether the recovery from failure is quick with minimal 
impact on normal operations. Currently there are two recovery mechanisms in VON: 
 

1) During initial contact to a node, the new node would help to check for 
missing neighbors (the EN command, see section 3.2.7). 

2) As nodes move around, boundary neighbors may help to discover new nodes. 
This behavior tends to correct inconsistency if at least enclosing neighbors 
are kept correctly by each node. 

 
In terms of recovery time, if a node suddenly fails, its neighbors will take notice 

in the next time-step, and would update their own Voronoi accordingly. In most cases 
this happens in the next time-step and would restore the P2P topology. If the leaving 
node is a boundary neighbor, potential replacements are learned via still-connected 
boundary neighbors, topology is thus also restored in the next time-step. We will 
demonstrate the reliability of VON with simulation results in section 4.3.3 and 4.3.4. 
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3.3.2 Complexity issues 
While the construction complexity for Voronoi is O(n log n) for the best 

algorithm, it will not be of concern in practical applications. The reason is that we 
expect each node only to maintain a limited number of neighboring nodes (less than 
50), so an application may still be quite responsive even if it needs to construct 
Voronoi diagrams on a dynamic and regular basis. 
 
 On the other hand, we should note that VON effectively reduces system-wide 
communication cost to O(n) from the potentially high cost of O(n2) in broadcast-type 
communication. As each node maintains only a finite set of neighboring connections, 
the total communication cost is N x C, where N is the number of nodes, and C is the 
maximum resource consumption at a particular node. 
 
3.3.3 Comparisons with other systems 
 Here we will make some comparisons of VON with other types of existing 
systems (see section 2.3 for descriptions of these systems). We also summarize the 
comparisons in Table 4. 
 

Table 4: Comparisons of P2P NVE systems 

 SimMUD Neighbor-list 

exchange 

Solipsis VON 

Consistency 

(Topology) 

Supernode Neighbor-list 

exchange 

(partitioning) 

Neighbor  

notify & query 

(undiscovery) 

Neighbor notify 

(high 

consistency) 

Responsive- 

ness 

High overhead 

(message relay) 

High overhead

(list exchange)

Medium overhead 

(neighbor query) 

Low overhead 

(notify only) 

Scalability Relied on 

supernode 

Fully- 

distributed 

Fully- 

distributed 

Fully- 

distributed 

Reliability Long up-time N/A N/A Self- 

organizing 
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SimMud 
 SimMud is based on the P2P overlay Pastry and pseudo-multicast Scribe. As 
Pastry is designed to be scalable, SimMud is also a scalable system. However, its 
main problem is the additional latency introduced by the “supernodes” (coordinators). 
In SimMud all messages must first be sent to the coordinator before being dispatched 
to the affected nodes individually. This creates the following problem: 
 

- Increased load for the coordinator nodes 
- Increased latency due to relay by the coordinator nodes 
- Increased complexity in design for backup mechanisms of the coordinators 

 
On the other hand, VON would not overload any particular node, as the system is 

fully-distributed, so no single node bears more responsibility than any other node. 
Latency is minimized as all peers make direct connections to each other, without any 
message relay. Also, because there is no super-node, no special back-up or recovery 
mechanism is needed, making the algorithm relatively simple and straight-forward. 
 
 However, by centralizing certain aspects of message delivery, SimMud is able to 
leverage message compression and aggregation techniques to reduce bandwidth 
consumption, which is one aspect that VON cannot support. 
 
Neighbor-list exchange 
 Compared with the approach suggested by Kawahara et al., our approach will 
not face the problem of overlay partition, as each node must minimally maintain its 
enclosing neighbor set. Enclosing neighbor set ensures that connections are 
maintained with nodes in all possible directions. In Kawahara’s approach, maintaining 
a fixed number of nearest neighbor does not prevent losing contacts with neighbors in 
directions that lack spatially-close nodes. 
  
 Another advantage of VON is that topology is maintained without extra message 
transmission. Neighbor discovery requests are embedded in the normal message 
traffics of position updates, and notification messages are sent only when an actual 
neighbor discovery has occurred. This saves bandwidth compared to exchanging 
neighbor list periodically. In fact, neighbor lists usually contain redundant information 
that makes sending them a waste to bandwidth. 
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Solipsis 
 In terms of design concepts, VON is most similar with Solipsis, where each node 
maintains a certain number of neighboring nodes (according to some rules), and that 
neighbor discovery is done by mutual collaboration between neighbors. Both VON 
and Solipsis also make direct connections among peers, which makes message 
transmission efficient. Both are also fully-distributed, so do not need to worry about 
super-node failure or overloading of particular nodes. 
 
 The key difference between VON and Solipsis lies in which neighboring nodes 
are maintained. In Solipsis the rule is that each node must be contained within a 
convex hull formed by its neighbors (refer back to Figure 9 in section 2.3.3); for VON, 
the neighbors to keep are the ones whose Voronoi regions overlap with the node’s 
AOI. Note that the enclosing neighbor set automatically constitutes a convex hull, so 
VON matches the requirement of Solipsis by default. However, there are cases where 
Solipsis may not discover a neighbor properly or efficiently (refer back to Figure 10 
in section 2.3.3), yet the same scenario would not happen for VON. Therefore, we 
may consider VON as a more complete solution.
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3.3.4 Problems with Voronoi-based approach 
 Despite the many good qualities for a Voronoi-based P2P design, there are still a 
number of problems. Here we discuss some that are inherent to P2P-NVE system, or 
to the Voronoi design. 
 
Multiple messages 

In a directly-connected P2P overlay, while it could be efficient to disseminate 
messages to relevant peers, a message must be sent redundantly to each connected 
peer. This certainly uses more bandwidth than client-server or the multicast approach, 
where the message is sent only once. In effect, VON’s design trades bandwidth for 
improved responsiveness. 
 
Lack of compression / aggregation techniques 

Due to the lack of centralized processing units, fully-distributed architecture 
cannot utilize a popular bandwidth conserving technique: message compression and 
aggregation. Here we again see how P2P does not necessarily conserve bandwidth, 
but rather, it distributes the bandwidth and processing requirements from server to all 
the participating nodes. Note however that, if super-nodes are used (as in SimMud, 
see section 2.3.1) then compressions and aggregations can be utilized.  
 
Worst-case neighbor size in Voronoi diagram 

If there are many nodes that line up in a circular fashion (see Figure 23), then a 
node may be forced to make connections beyond its capacity. Such situation could 
overload a node if careful measures are not taken. However, we expect that such 
situations are rare. Certain remedies could also be devised, such as asking machines 
with spare capacity to host “dummy nodes” to artificially modify the Voronoi layout 
(a topic for future research).  
 

 

Figure 23: Worse-case scenario for connectable neighbors 
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3.4 Implementation considerations 
 

The design described so far still requires some small modifications if it were to 
be implemented as a real system. The issues listed below are discovered either by 
analyzing the fine interaction of the VON algorithm, or during the implementation of 
the prototype library. 
 
3.4.1 Delay counters 

As nodes move around they tend to form and break connections frequently. To 
avoid nodes break off a recently formed connection, only to re-connect again when 
relative positions become favorable, a delay counter will help to ease the fluctuations. 
Delay counter is also useful when we adjust the AOI-radius. As frequent adjustments 
might cause undesirable fluctuation in connection patterns, we also set up a delay 
counter for AOI-radius adjustments. 

 
The exact threshold for the counters can be application-dependent and might 

require a few trial-and-error experimentations to determine. In our prototype we set 
the disconnection delay to 3 time-steps (e.g. a non-overlapped neighbor is 
disconnected after it is seen as non-overlapped for 3 continuous time-steps), the 
AOI-radius adjustment delay to 6 time-steps, and they appear to work well. 
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3.4.2 Speed limit 
If nodes in VON move too fast, beyond the coverage of its boundary neighbors’ 

enclosing neighbors, then its boundary neighbors will not be able to notify the correct 
set of new neighbors (see Figure 24). To avoid such problem, we might need to 
impose a “speed limit” to node movements. 
 

    
Figure 24: Potential incomplete neighbor discovery caused by fast-moving nodes 

If a node moves beyond the coverage of its boundary neighbors (to the triangle position), 
boundary neighbors will not be able to notify the new neighbors properly. 

 
This “speed-limit”, however, is both an application-specific decision, as well as 

how much “movement buffer” the neighboring nodes can provide. It will also depend 
on network latency. For example, if the boundary neighbors of the moving node have 
large Voronoi regions, then the moving node is free to move at a high speed, as new 
neighbors will not come into view until a large distance has been traveled.
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4. Simulation Results 
 
We have implemented our Voronoi-based P2P design and verify VON’s various 

properties with a simulation. In this part we will describe in detail, the experimental 
setup, metrics used in measurements and the simulation results.  
 
4.1 Simulation setup 
 

As it is impractical for us to test the design of VON on actual network (we would 
need thousands of volunteers), we have chosen to test the concepts with a simulator. 
We will describe both the software architecture and the hardware environment below. 
 
4.1.1 Software architecture 
 We implement the VON protocol as a C++ library. Networking functions are 
based on the open source cross-platform library ACE [Schmidt 02]. Steve Fortune’s 
sweepline algorithm [Fortune 86] is used for Voronoi constructions. Our prototype 
consists of a number of software components (C++ classes), listed in Table 5. 
 

Table 5: C++ classes and respective functions of the VON prototype 

Class Function 
von Main interface of the VON class library 

Voronoi General interface for Voronoi-related functions, such as insertion and 

deletion of nodes, query and verification for enclosing and boundary 

neighbors. 

SFVoronoi Implementation of Steve Fortune’s Voronoi construction algorithm. 

NetworkAcceptor Server-component that listens to a particular port. 

NetworkHandler Connection handler for incoming network transmission. 

MessageHandler Processing component for all incoming messages that compiles with the 

VON protocol (JOIN, MOVE, LEAVE, QUERY) 

SimNode Basic unit for running simulations. Acts as a simulated user in the NVE 

and performs movement behaviors. 

Interface Main interface to an outside simulator. It accepts parameters such as the 

number of nodes to be created, and the number of time-steps to be run. 
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4.1.2 Hardware environment and simulator 
 We run our simulation with a Pentium-4 2.2GB computer with 512MB of RAM. 
There is no actual network transmission during the simulation and all network 
transfers are simulated using localhost connections. 
 
 The software simulator runs a master program that creates each node as 
individual threads. It then executes the simulation with a given number of time-steps. 
For each time-step, the master simulator invokes each node to make one movement. 
Each node would send the MOVE message to all the neighbors that it currently knows, 
and allow some time for its neighbors to process the message. After a waiting period, 
the node returns execution to the master thread, which in turn invokes the next node. 
The behavior model for each node is that a node moves in a particular direction for 
the duration between 1 and 25 time-steps. At the end a new direction is randomly 
chosen. All nodes move with a constant velocity of 5 distance units per time-step. 
 
 To visualize the actual topology for a given simulation, we also implement a 
JAVA-based Graphical Users Interface (GUI) that uses the same C++ library as the 
simulator. A screenshot of a simulation in action is shown in Figure 25. 
 

 
Figure 25: A screenshot of the VON simulation (JAVA GUI) 

Small circles represent the nodes in the P2P network. Large circle is the AOI. Dots in the circle 
indicate established connections by node 37 (center). As can be seen, only a limited number of 
AOI-neighbors are maintained. 
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4.2 Metrics definition 
 
 To demonstrate VON’s performance we need to define certain metrics. We 
decide to capture the following types of indicators during the simulation: 
 
4.2.1 Topology consistency 

To understand how P2P NVE may perform compared to client-server 
architecture, Kawahara et al. defines the metrics consistency [Kawahara 04]. The 
metrics is defined as: 

 
 Where N is the number of nodes, P(i) is the number of observed nodes of node i, 
and Q(i) is the number of the AOI neighbors of node i. In other words, the metrics 
attempts to find the ratio of neighbors actually seen versus the nodes that should be 
seen by a particular node. However, given that their system does not consider 
synchronization of events, the metrics is more appropriately termed as topology 
consistency (as opposed to the more comprehensive notion of event consistency). We 
therefore will use the term topology consistency to describe the metrics. 
 
 Note that topology consistency does not take into account the difference between 
the observed coordinates and the actual coordinates of a neighbor. Topology is 
considered consistent as long as connections are maintained with the proper 
AOI-neighbors. This is because it would be difficult to assign the difference in 
coordinates for a missing neighbor (we can assign a large value to missing nodes, but 
then it would impact consistency measurements in an arbitrary way, therefore it is not 
appropriate). The measurement for differences between the actual and observed 
coordinates is instead described by the next metrics. 
 
4.2.2 Drift distance 

Drift distance is described in the MiMaze paper [Diot 99] to determine how 
much difference exists in the views between two nodes in a distributed virtual 
environment system. We adopt the idea and will use it to measure how much 
difference exists between a node’s local view and that of the correct global view of 
topology. Drift distance is defined simply as the difference in coordinates (in absolute 
value) between the observed coordinates and the actual coordinates of a node. To 
make the metrics useful, we average drift distance for all nodes for the duration of the 
simulation over the number of time-steps. 
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4.2.3 Average neighbor size 
In order to understand how many connections are made during the simulation, as 

they are critically related to resource consumption and scalability of the system, we 
record the number of neighbors a node knows at each time-step. Two types of data are 
recorded: the number of connected-neighbors and the number of AOI-neighbors. 
 
4.3 Results 
 

We will present the results in three groups, to demonstrate the scalability, 
topology consistency, and reliability of VON. Scalability is discussed first as it is the 
focus of this thesis. However, scalability is not meaningful if consistency is poor, 
therefore, we will discuss topology consistency next. In real networking environments, 
packet delay and loss are inevitable, which necessarily will degrade consistency. 
Therefore, the key to maintain consistency in actual networks is the speed of recovery 
from inconsistency, which we will present as the first part of the results on reliability. 
In the second part of reliability discussion, we will study the effect of packet loss on 
VON’s design. As mentioned in section 1.3, we do not consider latency currently, and 
assume that all messages are processed immediately once they are sent. 
 
4.3.1 Scalability 

We use the following simulation parameters to study both VON’s scalability and 
topology consistency: 
 

World dimension:    1000x1000 
AOI-radius:     150 
Packet loss rate:    0 
Simulation time-step:   1000 
Maximum connection per node:  10 
Number of nodes:     10 to 250, with an increment of 20 

 
Note that the parameters we choose will create a fairly dense area to test VON’s 

performance under crowding situations. Also, if we assume message-update is 10 
times per second (for comparison, a MMOG updates events at a rate of 3-5 times per 
second, while a fast pace first-shooter action game updates events at 10 – 15 times per 
second), then 1000 time-steps is equivalent to 100 simulated seconds, or about one 
and a half minute in the real world. 
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We show the transmission size of each node during one simulated second (10 
time-step) for both the basic and dynamic AOI models. Average transmission size is 
shown in Figure 26 and the maximum size among all nodes is shown in Figure 27. 
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Figure 26: Average transmission size per node per second 

 
We see that the average transmission size grows linearly for the basic model, 

which indicates that it will not be scalable as growth can progress unbounded. On the 
other hand, transmission size grows at a decreasing rate with dynamic AOI. Resource 
consumption at a given node therefore becomes bounded. 
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Figure 27: Maximum transmission size per second among all nodes 
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 We see that there exists an upper-bound of about 3 kb per second for the average 
transmission, and less than 4kb for the maximum transmission. This shows that even 
the most loaded node can operate within the limits of current generation of broadband 
(which typically has a capacity of at least 256 kbits per second, or 32 kb per second). 
 

Note that because we assume for zero packet loss, the average amount of 
messages sent and received are equal, and it is shown by the overlaps of the send and 
receive lines in Figure 26. In the basic model, the linear growth in transmission size is 
due to the fact that nodes are randomly and uniformly distributed. This makes the 
node density within AOI-radius to grow linearly with the total number of nodes. 
 
 The growth pattern in transmission size is explained by the number of neighbors 
maintained. Figure 28 shows clearly that upper bounds exist for neighbor-size in the 
dynamic AOI model, while the neighbor size grows linearly in the basic model. 
Number of average connected-neighbors approaches 10 (which is the connection 
limit), while the number of average AOI-neighbors approaches 6. 
 
 The difference between the average number of connected-neighbors and 
AOI-neighbors shows that there is a small overhead to maintain topology in VON. 
The additional connections are likely caused by the requirement to keep enclosing 
neighbors as the minimal set to ensure topology consistency. However, this overhead 
remains constant (at about 4 nodes) regardless of the number of nodes in the system. 
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Figure 28: Average neighbor size for basic and dynamic AOI models 
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The benefit of P2P is more evidently demonstrated when compared to the 

client-server architecture. Figure 29 shows the transmission size per node per second 
for both client-server and VON. The server-side network resource consumption is 
calculated by estimation of equivalent functionality (by assuming each movement 
requires 8 bytes for x and y coordinates). Message size grows faster for client-server 
than for VON, as the server must deal with many clients simultaneously. Note also 
that the average message size grows faster for send than receive at the server. The 
reason is that while the server receives only one coordinate message from each client, 
it must send the coordinates of all AOI-neighbors of that client in return. 
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Figure 29: Comparison of transmission size between VON and client-server 

 
Dynamic AOI adjustment thus plays an important role in achieving scalability in 

VON, and its effects on AOI-radius are shown in Figure 30. Here we see that the 
AOI-radius starts at 150 but gradually decreases to around 85 for 150 nodes. By 
shrinking the AOI-radius, node density within AOI thus becomes bounded. 
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Figure 30: Effect of node increase on average AOI-radius 

 
 While the average number of neighbors maintained is bounded, one potential 
concern is that the maximum number of connections at a given moment might exceed 
a particular node’s capacity. Table 6 shows the maximum and average number of 
neighbors kept for each simulation trial. We see that the maximum number of 
neighbors maintained is indeed much higher than the average (for example, 32 nodes 
were connected at one point versus the average of 8.7 nodes during the 230-node trial). 
However, Figure 27 has shown that the maximum transmission size is indeed bounded. 
The large connection size therefore indicates a temporary surge of connections that is 
quickly restored to normal. It also means that overall VON is still scalable, although 
connection patterns could at times be disruptive. 
 

Table 6: Average and maximum neighbor size for basic and dynamic AOI models 

  Number of Nodes 

Model 10 30 50 70 90 110 130 150 170 190 210 230 250

connected max 9 13 13 15 17 21 24 23 27 26 41 35 44

  avg 4.31 5.56 6.26 7.06 7.94 8.76 9.52 10.72 11.81 12.49 13.77 15.04 16.03

AOI max 3 6 11 13 15 19 20 20 24 24 30 31 31
basic 

  avg 0.04 1.47 2.58 3.87 5.12 6.10 7.11 8.42 9.54 10.26 11.54 12.76 13.71

connected max 9 13 13 14 16 19 24 22 22 26 23 32 28

  avg 4.31 5.56 6.26 7.01 7.61 7.97 8.15 8.34 8.51 8.59 8.65 8.70 8.82

AOI max 3 6 11 12 12 19 14 20 20 23 22 26 26
dAOI 

  avg 0.40 1.47 2.58 3.78 4.64 4.97 5.18 5.21 5.32 5.32 5.25 5.12 5.23
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4.3.2 Topology consistency 
 Figure 31 shows the topology consistency measurements for both the basic and 
dynamic AOI models as a function of total number of nodes in the system. 
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Figure 31: Topology consistency for basic and dynamic AOI models 

 
Here it is clear that topology consistency remains close to 100% for all trials in 

the basic model. The slight consistency drop (for example, 99.92% for 250 nodes) is 
likely due to a simulator problem. As observed during the simulation, some nodes 
may occasionally stop to respond to other nodes, causing them to become increasingly 
inconsistent in their knowledge of neighboring nodes. 

 
A larger decrease in topology consistency exists for the dynamic AOI model. 

However, it should be noted that the lowest value is still above 99.70%. The cause is 
likely due to asymmetric understandings of neighbor relationship after AOI-radius 
adjustments (refer back to Figure 22 in section 3.2.7). However, inconsistencies are 
bound to occur in real networks where latency and pack loss exist. Therefore, the 
more important question to ask is: can inconsistency be fixed quickly when occurred? 
We will answer this question in the next section. 
 
 The high degree of topology consistency in VON is further confirmed by the 
measurements of average drift distance (shown in Figure 32). Here we see that the 
average value of drift distance is very low (i.e. close to 0) for both the basic and 
dynamic AOI models. 
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Figure 32: Average drift distance for basic and dynamic AOI models 

 
4.3.3 Reliability (recovery from inconsistency) 
 Figure 33 shows a time-series of changes in topology consistency for 110 nodes 
between time-step 150 and 250. We see that the per-step average consistency remains 
high between 99% and 100%. For particular nodes, we do see drops in consistency 
occur occasionally. However, the time-series shows that the drops usually recover 
quickly within a few time-steps. Note that some of the low consistencies seen (for 
example, consistency for node 1 drops to 70% at one point) do not necessarily 
indicate poor performance, as topology consistency can become low easily when 
AOI-neighbors are few (for example, if only one of the two visible AOI-neighbors are 
seen, then consistency is calculated to be only 50%). 
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Figure 33: Change in topology consistency for 110 nodes (time-steps: 150-250) 
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A more relevant indicator then, is how many time-steps VON takes to recover 
from inconsistency, which is shown in Figure 34. We see that the average number of 
recovery-steps is about 1.3 to 1.5, and stays relatively constant for node size above 
100. This shows that VON maintains good robustness against topology inconsistency. 
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Figure 34: Average number of steps to recover from inconsistency 

 
4.3.4 Reliability (effect of packet loss) 

We will now discuss how VON performs in environments where packets may be 
lost during transmission. We use the following parameters for simulation: 
 

World dimension:    1000x1000 
AOI-radius:     150 
Packet loss rate:    0% ~ 100% 
Simulation time-step:   1000 
Maximum connection per node:  10 
Number of nodes:     150 

 
 Packet loss is simulated by generating a random number when processing a 
received message. If the random number falls below the specified loss rate, then the 
message is ignored. Packet loss is applied to MOVE, MOVE_B, MOVE_BD, and 
NODE messages (refer back to section 3.2.6 for the message protocol). Other 
message types are still delivered reliably, as they are essential to ensure the correct 
function of the overlay. Dynamic AOI model is adopted for the simulation as we want 
to see whether scalability can still be achieved when packet loss exists. 
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 We first show the effect of packet loss on topology consistency in Figure 35. 
Topology consistency is maintained at a high level even when the loss rate is 50%. 
After a certain critical point (after 60% packet loss) consistency begins to drop down 
dramatically (which might indicate the existence of overlay partitions). 
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Figure 35: Effect of loss rate on topology consistency (dynamic AOI model) 

 
 The effect of packet loss on average drift distance is shown in Figure 36. We can 
see that for loss rate below 50%, the drift distance remains relatively low (but grows 
exponentially), and begins to increase significantly after a loss rate of 60%. 
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Figure 36: Effect of loss rate on average drift distance 
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 Figure 37 shows the effect of loss rate on average neighbor size for both 
connected-neighbors and AOI-neighbors. Here we again see that neighbors are 
maintained in a relatively stable fashion until a loss rate of 60%, when the neighbor 
size begins to drop dramatically. 
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Figure 37: Effect of loss rate on average neighbor size 

 
In Figure 38, we see the number of steps to recover from inconsistency grows 

slowly for loss rate below 50%, then increases sharply after the loss rate of 60%. This 
result again confirms that a critical point exists between the loss rate of 50% and 60%. 
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Figure 38: Effect of loss rate on average recovery steps 
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 In summary, it can be seen that VON maintains relatively stable behavior for loss 
rate up to 50%, and only starts to degrade after a loss rate of 60%. This is good 
indication that VON is reliable and may endure severe packet loss. 
 
 We suspect that at the critical point of loss rate between 50% and 60%, some 
overlay partition might be occurring. However, confirmation and solution to this 
scenario is left for future research (see section 5.3.2 for discussion). 
 
 One remaining question is: how reasonable is our choice to allow loss in only the 
MOVE and NODE messages? In other words, is guaranteed delivery of other types of 
messages suitable in real systems, as guaranteed delivery could degrade system 
performance (i.e. responsiveness) by introducing too much delay? 
 
 To answer this question, we also measure the percentage breakdown of total 
transmission by message types (see Table 7). Here we see that all MOVE-related 
messages (i.e. MOVE, MOVE_B, and MOVE_BD) and NODE messages together 
occupy roughly 95% of all transmission. Therefore, sending other types of messages 
reliably (for example, via TCP) will not degrade system performance. 
 

Table 7: Percentage breakdown of transmission size by message types (for 150 nodes) 

  Loss rate (%)  
Types 0 10 30 50 70 90 Avg Min Max 

GREET 0.54 0.55 0.55 0.56 0.58 0.42 0.53 0.42 0.58 
ID 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.02 
QUERY 0.04 0.04 0.05 0.05 0.07 0.36 0.10 0.04 0.36 
HELLO 2.79 2.82 2.84 2.87 2.94 1.89 2.69 1.89 2.94 
EN 1.10 1.11 1.13 1.13 1.14 0.76 1.06 0.76 1.14 
MOVE 6.51 6.50 6.74 7.37 7.58 2.51 6.20 2.51 7.58 
MOVE_B 55.64 55.62 56.41 57.98 62.70 86.74 62.52 55.62 86.74 
MOVE_BD 1.72 1.69 1.57 1.44 1.28 0.47 1.36 0.47 1.72 
NODE 31.66 31.66 30.70 28.60 23.71 6.84 25.53 6.84 31.66 
Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00     
MOVE+NODE 95.52 95.47 95.43 95.39 95.27 96.56 95.61     
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5. Conclusion 
 
5.1 A promising scalability solution 
 
 We have presented a promising solution for constructing scalable Networked 
Virtual Environment based on Voronoi diagram. The key idea of the design is for each 
node to maintain a Voronoi diagram of the neighboring nodes within its area of 
interest. Although demonstrating scalability in a real system is not practical for the 
current work, we have shown the scalability potential of Voronoi-based P2P with 
simulation results. 
 
 In the simulation, it is shown that there are upper bounds to message 
transmission (both in maximum and average message size) and the average number of 
neighbors maintained by a node. This indicates that the amount of bandwidth and 
processing requirement for each node is bounded, independent of the total number of 
nodes in the system. The bounded resource-consumption characteristic is evidence 
that the system is scalable. The proposed design offers several attractive qualities for 
creating large-scale virtual environments: 
 
Scalable 
 VON restricts message traffic transmitted between host computers to only those 
that are relevant, achieving near-ideal interest management and message filtering. As 
the bandwidth and processing requirement for each node is independent of the total 
number of nodes in the system, and depends only on the number of neighboring nodes 
that it interacts with, the system is thus scalable. 
 
Efficient 
 Not only message traffic is filtered down to near-ideal interest management, but 
because P2P topology is maintained with minimal overhead, redundant information 
exchange is greatly avoided. By utilizing direct connection between peers, messages 
also reach their relevant targets with the least amount of latency. 
 
Robust 
 By making the architecture fully-distributed, there is no single point of failure 
that exists in client-server architecture. Also, due to the fact that each node maintains 
direct link with those that it interacts with, recovery from node failure can be done 
quickly with little overhead. 
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Simple 
 The algorithm for keeping existing neighbors and discovering new neighbors are 
facilitated with Voronoi diagram, with only a few rules to follow. Compared to other 
P2P schemes where each node may need to maintain various types of list or table, or 
sophisticated partitioning and merging mechanism for regions, VON’s design is rather 
simple. It is also simpler than server-cluster architecture where various partitioning, 
load-balancing, and entity-migration mechanisms need to be considered. 
 
Affordable 
 As the design is fully-distributed and does not place heavy responsibility onto 
any one node, the whole system may be constructed with just one light-weight 
gateway server, making it affordable to small NVE developers, even individuals. 
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5.2 Potential applications 
 

VON’s scalability, efficiency, and robustness make it a natural foundation for 
constructing certain types of applications. We discuss some of the possibilities below: 
 
Massively Multiplayer Online Games (MMOG) 
 Although we have not developed adequate mechanism to address persistency and 
security issues, which are crucial for commercial NVEs, VON can still be useful to 
MMOG by relieving the server of user position maintenance. If there is no serious 
security consideration for user positions, then position updates (which usually take a 
large portion of network traffics in MMOG) can be maintained by using VON. 
 
Large-scale military simulation 
 VON’s design makes it suitable for constructing truly large-scale virtual 
environments affordably. Its scalability and low-cost characteristics match the design 
goals for SIMNET (refer back to section 2.1), which is to build a large number of 
low-cost simulators. As security is generally not an issue for military simulators (all 
simulators are under the military’s internal controls), military applications of VON 
might actually be easier to realize than commercial ones. 
 
3D Web 
 There are now many websites that offer 3D virtual navigation for training, 
product demonstration, or touring purposes. However, most of these navigations only 
allow single-user experience. Part of the reason is that there has not been an easy and 
affordable way to add multi-user capability to such environments, and all current 
solutions require costly server-side investments. The simplicity and affordability of 
VON could allow multi-user capability be added to these 3D environments. 
 
Scientific simulations 
 Although we have mostly discussed VON in the context of virtual environment 
applications, viewed in a more general way, VON is in fact a mechanism to 
interconnect many dispersedly located nodes placed in some logical dimensions that 
require frequent synchronizations. Therefore, for certain scientific simulations that 
have a spatial orientation and require frequent state synchronizations, VON might be 
a possible platform to run such simulations on a large scale. 
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5.3 Future research 
 
Work remains to be done to make VON more comprehensive to support the full 

functional requirements of NVE systems. We will discuss a few major topics for 
future research in this section. 
 
5.3.1 Reliability measurements 

We have discussed VON’s reliability in terms of how fast it recovers from 
topology inconsistency and some simulated effects of packet loss. However, a more 
complete and realistic analysis of reliability should also consider latency and the issue 
of node failures. Experiments conducted in actual network environments will also 
shed lights on VON’s real performance. Additionally, the effects of different 
movement velocities on topology consistency should also be studied. 
 
5.3.2 Overlay partition problem 

All P2P overlay networks face the problem of splitting into separate partitions 
(e.g. the overlay becomes not fully-connected). We have shown earlier that it would 
not happen under normal operation (if the number of failing node is small). However, 
if a large number of nodes fail simultaneously, or if packet loss rate is high, it is still 
possible for the overlay to be broken into separate parts. Kawahara et al. suggested in 
their paper that each node may keep information for some distant nodes, so that 
contacts can be made to restore the overlay in case of massive failures. They also 
introduced the concept of random introduction [Kawahara 04], which is for each node 
to check back with the server periodically to re-discover missing nodes. One 
important research direction therefore is a distributed recovery mechanism that 
provides high reliability against massive node failures. 
 
5.3.3 Distributed event consistency 
 Event consistency has not yet been considered in the present design, therefore it 
is not guaranteed in the simulation. Some may consider it difficult to maintain event 
consistency without using a centralized authority (e.g. client-server architecture). 
However, we argue that it is not only achievable, but might even be done more 
efficiently than centralized approach.  
 
 We note that in any distributed system such as NVE, due to network latency, 
absolute event consistency simply does not exist (i.e. it takes time for message to 
travel from host to host, messages cannot be processed and executed at the same time, 
if time is defined as an objective wall-clock time). What centralized event processing 
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achieves is simply the preservation of casual order consistency and time-space 
consistency mentioned earlier (in section 1.5). Event consistency may be more 
appropriately called “bounded inconsistency”. That is, although inconsistency exists, 
it is tolerated as long as it does not diverge and disturb user experience. What 
client-server architecture represents, with respect to consistency, are in fact two 
mechanisms: 
 

1) A notion of absolute reality (e.g. a true version of reality). 
2) A mechanism to correct inconsistency so it remains bounded.  
 
Element 1) is simply the version of various game states maintained at the server, 

including the order of event occurrence (casual order consistency) and the actual 
values of various states (time-space consistency). In fact, because server’s version is 
considered “the truth”, it could even sacrifice a client’s idea of its own position if it 
contradicts the server’s version, even though strictly speaking, a client should know 
better what its own current position is. Client-server architecture simply chooses to 
ignore any client-side judgment in favor of the server’s view of the world. Element 2) 
is done by sending out server states periodically to clients, so that all the clients 
follow the same event occurrences and states updates, more or less within the server’s 
version. 
 
 We think that the notion of event consistency commonly referred in client-server 
architecture can be dissected into the above elements. Therefore, we may achieve 
event consistency for P2P systems if these two elements can also be defined. To create 
bounded consistency in VON, we offer some initial ideas: 
 
Definition of the “true version”: 
 In client-server architecture, the authoritative event order and states are defined 
as the version which the server maintains. However, in a fully-distributed system no 
central repository of states exists, so we necessarily need to resort to a model where 
each node keeps its own version of part of the “global reality”. The global 
environment will exist more as a consensus between nodes than as synchronization of 
all the events (which is difficult to do efficiently, see the idea in Crosbie Fitch’s article 
“Cyberspace in the 21st Century” [Fitch 01]).  
 

One possibility is to allow each node to be the owner of all event states within its 
Voronoi region (note that the states include the node’s own position and the various 
objects that might present in the region). Then, as the Voronoi region changes shape 
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due to position updates, ownership may be transferred to other nodes in a 
deterministic manner. However, at all times each node remains the authoritative 
owner of its own position. In such a scheme, instead of one machine maintaining the 
true version, every machine maintains a small part of the complete states of the world. 
 
Recovery mechanism from inconsistency 

Some previous works to achieve event consistency in a distributed simulation 
exist in the literature, namely, the concept of critical causality to preserve casual order 
consistency [Zhou 02], and bucket synchronization to preserve time-space consistency 
[Diot 99]. We will describe each of them below: 
 

Critical Causality 
 Real-world events happen according to certain casual orders, and we 
become accustomed to such ordering. We will find simulation behavior “weird” 
if such ordering is violated. The concept of critical causality is to define events 
as “trigger-response” pairs, such that if an event is created as the result of a 
previous event, then the previous event is included in the message sent to other 
entities. This way, the receivers of the “response event” will also know the 
“triggering event” and be able to display it first, should it miss the trigger event. 
This casual receive order delivery will preserve the correct causality of trigger 
and response events, but not necessarily preserve absolute ordering over logical 
time. This way it could avoid the costly delay required for absolute event 
ordering and improve responsiveness of the simulation. 
 
Bucket Synchronization 
 The idea of bucket synchronization is that simulation is divided into discrete 
time buckets. Each bucket has a clearly defined start time and end time, and is 
followed by the next bucket. As messages are received from other nodes, they 
are placed into respective buckets according to the time-stamp of the sender of 
the message. When the end time of a bucket is reached, event messages in the 
same bucket are sorted by time-stamp, and then processed together. 
 

By adding a little delay to the event processing, synchronizations of all the 
relevant events can be achieved, given that event messages do arrive no later 
than a pre-specified playout delay. If a message is lost in transmission or delayed, 
then it will be ignored. Some dead reckoning mechanism might be used to 
estimate entity position in place of the missing message based on historical 
records. 
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In the MiMaze paper, experiments were carried out such that the playout delay is 
set to 100ms, and there are 25 buckets per second (each bucket is 40ms long). Users 
of the system reported smooth interactivity. 

 
 Event consistency is one aspect that has not being addressed in the present work. 
However, the above discussion should give some ideas as to how it could be achieved 
to an acceptable degree. 
 
5.3.4 Persistency maintenance 
 Persistency is the next requirement after scalability for creating a realistic, 
immersive environment. It is also the corner stone for building true cyberspace. 
However, achieving persistency on P2P architecture is also an inherently difficult 
problem, as nodes in P2P overlay may fail at any time. Persistency therefore either 
has to be achieved with some centralized repository or with sufficient data 
redundancy across many nodes.  
 
 We expect that in the end, a decentralized solution to persistency would be 
required if scalability is to be supported, however, persistency cannot be achieved 
unless we can make the assumption that a large percentage of nodes in the virtual 
environment stay online most of the time. 
 
 Our current thought about potential persistency solution in VON is to have each 
node manage the object or event states within its own Voronoi region (as mentioned 
previously in section 5.3.3). This would allow transient states be maintained. To make 
states persistent, each node may send back a state update back to a central “game state 
server”. The server would maintain the persistency for all the states. The server does 
not interact with any node, but simply serves as a repository. Nodes and server may 
negotiate the frequency for update, so that server would not be overloaded. 
 
 This would be a centralized solution to the persistency problem. For 
decentralized solution, we might look into distributed database research such as 
OceanStore [Kubiatowicz 00] for inspirations. 
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5.3.5 P2P-based 3D streaming 
 To make NVE truly accessible and affordable, it is best if various types of NVE 
can be visited as easily as browsing the web, with a universal client program that 
could access various NVEs set up by companies or individuals. However, this would 
require large amount of 3D content data, such as 3D models, textures, animations be 
downloaded in real-time. A type of 3D streaming technique [Sahm 04] may thus be 
required alongside with message exchange and filtering techniques. 
 
 We consider 3D streaming a crucial part in promoting accessibility to NVEs, and 
it would create even greater impact if it is constructed on top of a matured P2P 
architecture. It is still early to discuss about P2P-based 3D streaming, as both P2P and 
3D streaming are relatively new concepts, yet we do feel that their importance and 
applicability will become evident as infrastructure matures and P2P applications 
become integral to daily life.
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ABSTRACT 
We propose a fully-distributed peer-to-peer architecture to solve the 
scalability problem of Networked Virtual Environment in a simple 
and efficient manner. Our method exploits locality of user interest 
inherent to such systems and is based on the mathematical construct 
Voronoi diagram. Scalable, responsive, fault-tolerant NVE can thus 
be constructed and deployed in an affordable way. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design --- Distributed networks 

General Terms: Algorithms, Design 

Keywords 
Networked Virtual Environment (NVE), peer-to-peer (P2P), 
massively multiplayer (MMP), Voronoi diagram, scalability, 
interest management 

1. INTRODUCTION 
Networked Virtual Environments (NVEs) [13] are computer-

generated, synthetic worlds that allow simultaneous interactions of 
multiple participants. Since the early days of SIMNET, a U.S. 
Government project for large scale combat simulations, to the recent 
boom of Massively Multiplayer (MMP) Online Games (MMOG) 
[8], efforts to allow people to interact in realistic, immersive virtual 
environments have gone a long way. Science fiction works, such as 
Neal Stephenson’s novel Snow Crash and the recent Matrix movie 
trilogy, serve as inspirations to many for the eventual creation of a 
3D environment that is truly massive, persistent, realistic and 
immersive. With rapid technology developments, converging 
advances in CPU, 3D accelerator, and bandwidth may make the 
vision come true in the foreseeable future. However, a number of 
issues exist in the creation of a large-scale NVE, namely: 
Consistency - For meaningful interactions to happen, each user’s 
experiences in the virtual world must be more or less consistent. 
This includes maintaining states and keeping events synchronized. 
Performance / Responsiveness - NVEs are simulations of the real 
world. Responsiveness therefore is important for immersion. 
However, performance requirements vary between applications. 

Security - Most NVEs allow people to engage competitively (e.g. 
combat or treasure hunt). User authentication and fairness against 
cheating therefore are required. In fact, this is often the most 
concerned issue by commercial NVE developers.  
Scalability – Scalability usually concerns with the number of 
simultaneous users in NVE [13]. It is important in two respects: (1) 
Content possibility. Certain game plays are only realizable when 
many people participate, such as community and social oriented 
game play. (2) Service availability. Large-scale NVEs are similar to 
websites, where usage may increase dramatically and unexpectedly. 
Systems will break if they are not scalable. 
Persistency - To create sophisticated contents, certain data, such as 
user profile and valuable virtual objects, must be persistently stored 
and accessed between user sessions. 
Reliability / Fault-tolerance – User experience is negatively 
affected if a play session suddenly breaks down due to server failure. 
Reliability is thus important to make NVE a service with quality. 

The first three issues exist for all multiplayer virtual 
environments. Remaining ones are additional criteria for MMP 
applications. We consider scalability the most important issue if we 
plan to build truly massive worlds and applications, which millions 
of people can enjoy. Current approaches to scalability mostly 
include setting up multiple servers or server-clusters. However, 
maintaining server resources is costly and has inherent design 
limitation, as we will discuss in the next section. 

This paper proposes a fully-distributed peer-to-peer (P2P) 
architecture, which attempts to solve the scalability problem based 
on the mathematical construct Voronoi diagram [4]. The main 
contribution of the paper is the proposal of a very simple and 
resource-efficient solution to the difficult scalability problem. Our 
solution dramatically reduces server load and can be achieved with 
a single lightweight server. In fact, the server only serves as an 
access point that provides authentication, and is not required after 
login. This will allow scalable NVEs to be built affordably.  

In order to simplify the problem, two assumptions are made: (1) 
user computers can be trusted (2) message exchange itself is 
sufficient for maintaining the states of the world (i.e. user position, 
user actions, and temporary objects). In other words, currently we 
do not take security and persistency issues into consideration.  

We will analyze the scalability problem in Section 2, and will 
present our design in Section 3. Our current implementation is 
described in Section 4. Finally, Section 5 concludes the paper. 

2. THE SCALABILITY PROBLEM 
2.1 Theoretical Analysis 

Scalability is a phenomenon observed in many natural and 
artificial systems. We see systems that accommodate components 
(or nodes) in a wide range of numbers as being “scalable”. 
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There are two main characteristics for scalable systems: 
 Joinability: components or nodes may be added to the system. 
 Maintainability: system remains functional after various nodes 

enter or leave the system. 
Existing resources in any given system is usually finite, and are 

consumed at end-point when a new node is added. For example, 
bandwidth of existing routers is consumed when adding new routers. 
A system is “joinable” only when the accepting node has enough 
spare resources. Likewise, maintainability is sustained only when 
resource is not depleted after the new node joins. Two more 
properties exist to counter resource depletion: 

 Resource-growing: useful system resources (i.e. resource at the 
accepting nodes) increase with the addition of new nodes 

 Decentralized end-point resource consumption: addition of a 
node does not consume some “centralized” resource. 
Resource-growing is a general strategy found in almost all 

scalable systems (reducing consumption works to the same effect). 
In the Internet, although additional router consumes bandwidth, it 
also contributes new resource to accommodate new routers. 
Decentralized resource consumption, on the other hand, is not 
necessarily required. As long as resources are available at the 
accepting node, system can be “joinable” and “maintainable” even 
if it is done in a centralized fashion. For example, in a server-cluster, 
as long as server resources (bandwidth and processing capability) 
can be increased, then scalability is maintainable [1]. However, 
most massively scalable systems (such as Internet) exhibit 
decentralized resource consumption. 

From the above discussion, we expect that to build a truly 
scalable NVE, one that may accommodate more users by orders of 
magnitude than existing systems, we need architectures that can 
grow its resource, and does not require centralized resource when 
additional users join. 

2.2 Previous Work 
Scalability for NVE generally concerns with whether the system 

can accommodate a large number of simultaneous users. Various 
approaches have been taken, and generally fall into either the 
“increase resource” or the “reduce consumption” categories: 
Increase Resource. Using multiple servers for multiple worlds or 
using server-cluster to maintain a single world has become a popular 
approach, especially for commercial NVEs [1] [14]. For example, 
commercial MMOGs are set up with multiple servers for the same 
game, each serving a pre-determined maximum number of users. 
When a server is full, it simply denies additional connections. Total 
number of players can be very large. (For example, a record of 
160,000 concurrent users was reported for Lineage in 2002 in 
Taiwan.) However, users between different servers may not interact, 
and some systems do not even share user profiles. Server-cluster [3], 
on the other hand, divides the virtual world into regions or zones, 
and supports what appears to users as a single coherent world. Since 
server-cluster offers desirable properties, it has become the trend for 
building large-scale NVEs. However, server-centered approach is 
costly for server-side bandwidth, hardware, and maintenance, which 
limits the number of potential NVE developers. 
Decrease Consumption. The central theme to this approach is 
interest management [12]. While other techniques to economize 
bandwidth exist, such as packet compression or aggregation [13], 
we consider interest management more relevant. Messages are 

generated by user actions and exchanged to maintain consistency 
[13]. However, if messages are sent to all other users, the amount of 
transmission and processing grows at O(n2), which is clearly not 
scalable. Real-world observation tells us that each individual only 
has a limited visibility or “sphere of interaction”. In other words, our 
interest is localized [12]. Interest management therefore deals with 
relevant information filtering, to decrease unnecessary resource 
consumption while maintaining adequate interactivity. Early NVEs 
did not have interest management, and were set up by hosts 
broadcasting messages in the same LAN [13]. To provide interest 
management, later systems adopt the client-server model, where 
clients send messages to the server, which acts as interest manager 
and sends back filtered messages. Interest management can be based 
on various criteria. It can be distance-based (by geography), class-
based (by object or user attributes), or some combination of both 
[12]. A commonly used concept is Area of Interest (AOI), which 
describes a circular or rectangular box centered on the user. Only 
messages generated within AOI are relevant to the user (Figure 1). 

 
Figure 1: Each dot represents a user in the virtual world, and 
circle represents Area of Interest (AOI) of a particular user. 

A common technique in interest management is to divide the 
world into various regions. Each user only receives messages 
(position update or interaction message) from relevant regions. This 
can be done by server-side message filtering, or via network-support 
such as multicast [10]. However, region size can be difficult to 
determine (Figure 2). If it is larger than AOI, irrelevant messages 
are still received; while if it is smaller than AOI, it becomes 
inefficient to maintain (e.g. subscribing to too many multicast 
address). Ideally, regions would dynamically adjust size and shape 
based on current user location. The real challenge then is to create 
individualized region that moves with the user. 

   
Figure 2: Difficulty in choosing region size. (L) AOI is smaller 
than region. (R) AOI is larger than region. 

2.3 Promise and Challenge of P2P NVE 
We consider the main challenge in scalability as: how to 

construct “resource-growing” and “decentralized consumption” into 
an architecture that also exhibits ideal interest management? 

Peer-to-peer architecture naturally comes to mind, and appears 
to be an attractive alternative to client-server. Each participant 
contributes resource to maintain the system without consuming any 



centralized resource. It matches with our criteria nicely. P2P 
architecture can be made very efficient if we only connect to 
relevant users (i.e. those within the AOI). (Keller and Simon 
describe this property as keeping Local Awareness [6].) A number 
of P2P overlay networks have been proposed in recent years: CAN, 
Chord, Pastry [8], and Hypercast [9], to name a few. However, these 
overlay networks mainly deal with setting up a distributed hash 
table (DHT) that maps keys to values and allows for content-lookup 
and retrieval (as in distributed file-sharing). While it is possible to 
build NVE on such overlay, as recently proposed by Knutsson et al. 
[8], there is overhead associated with using the overlay. 

Common questions to all P2P networks are: correct topology 
maintenance and efficient content retrieval. Since a single node does 
not have knowledge of global topology or content location [7], these 
become difficult questions important to any P2P design. For 
topology maintenance, there are two issues to consider: whether it is 
fully-connected (described by Keller and Simon as the Global 
Connectivity property [6]) and whether all nodes have a consistent 
view of the topology. Unlike file-sharing P2P, where the desired 
content changes with user preference randomly and unpredictably, 
for P2P NVE the desired content is easier to identify -- messages 
generated by other users within the AOI. If only such messages are 
received, then message flow is managed optimally. So the “content 
discovery problem” for P2P network translates naturally to a 
neighbor discovery problem in P2P NVE. 

Neighbor discovery is challenging, because there is a paradox in 
maintaining consistency in decentralized systems, as described by 
Makbily et al. [11]. At least three recently published papers offer 
different solutions: (1) Knutsson et al. describe P2P support for 
Massively Multiplayer Games by using Pastry and Scribe, a P2P 
overlay and its associated simulated multicast [8]. The virtual world 
is divided into regions of fixed-size. Each region is managed by a 
promoted node called coordinator, which serves as the root of a 
multicast tree. Users inside the same region subscribe to the address 
of the root node to receive updates from other users, so neighbors 
are discovered via the coordinator. Coordinators maintain links with 
each other, facilitating user transition to other regions. (2) Kawahara 
et al. describes a fully-distributed scheme where each user keeps 
track of a fixed number of nearest neighbors [5]. Nodes constantly 
exchange neighbor list with their own neighbors. After sorting 
through the list by distance, each node may learn of new nodes and 
update existing links. (3) Solipsis [6] is also a fully-distributed 
system, where each node attempts to link with all the nodes within 
its AOI. Neighboring nodes serve as the “watchmen” for any 
approaching foreign nodes. Neighbor discovery is done by 
notification from known neighbors. 

However, each of them incurs some undesirable properties. In 
Knutsson et al., since fixed region size does not reflect true AOI, 
users cannot see across regions. If users decide to listen to more 
regions, as suggested in the paper, unnecessary messages beyond 
AOI will be received. A more serious problem is the performance 
penalty incurred by using P2P overlay. As the overlay does not 
consider AOI, messages may need to be relayed by other nodes (1 
to 2 hops for most cases, but in some cases it goes beyond 50. Note 
too that this is “virtual hop”, so more delays happen at the physical 
level). In short, the architecture does not fully utilize the power of 
direct connections. In the Kawahara et al. approach, direct links are 
maintained between neighbors, so hop-count is most efficient (e.g. 
one virtual hop). However, constant exchange of neighbor list incurs 
network overhead (if 10 nearest neighbors are kept, one exchange 

requires receiving updates of 10x10 nodes). The more serious 
problem is keeping the topology connected. Since only a finite 
number of nearest neighbors are maintained, groups of users may 
lose contact to each other if separated by a large distance. The 
underlying overlay can thus separate into isolated parts [5]. Solipsis 
also uses direct links among neighbors (there is no relay). 
Additionally, it requires that each node be inside a convex hull 
formed by its neighbors in 2D plane. This way the topology is 
guaranteed to be fully connected (i.e. Global Connectivity is kept). 
However, inconsistent topology may happen during normal 
operation (though rare), since an incoming node may be unknown to 
directly connected neighbors, proper neighbor discovery is not 
guaranteed (i.e. Local Awareness is not kept, see Figure 3). 

 
Figure 3: Undiscovered node in Solipsis. Lines are connections. 
Square node is not discovered as it moves from position 1 to 2. 
Topology is inconsistent though fully-connected. 

3. VORONOI-BASED P2P NVE 

3.1 Design 

  
Figure 4: (L) Voronoi diagram. (R) Square (□): enclosing 
neighbors, triangle (∆): boundary neighbors. 

In this section, we will explain the design and analysis of our 
P2P approach, which is based on a well-studied mathematical 
construct Voronoi diagram [4]. Given n points on a plane (each 
point called a site), a Voronoi diagram is constructed by partitioning 
the plane into n non-overlapping regions that contain exactly one 
site in each region. A region contains all the points closest to the 
region’s site than to any other site (Figure 4L). The entire plane is 
therefore divided into arbitrary sizes in a deterministic way. Voronoi 
diagram can be used to find the k-nearest neighbors of a specific site. 
By using Voronoi, we may be able to identify enclosing and 
boundary neighbors for a given node. Enclosing neighbors are 
defined as regions that share a common edge with a given node’s 
own region. Boundary neighbors are defined as regions that overlap 
with the node’s AOI boundary (Figure 4R). Note that an enclosing 
neighbor can also be a boundary neighbor. These properties will 
help to solve the neighbor discovery problem described earlier. 

The basic idea of our approach is to let each node construct and 
maintain a Voronoi diagram, based on the spatial coordinates of 
neighbors within the node’s AOI. Each node keeps P2P connections 
with all neighbors that constitute the Voronoi. Connections are 
therefore based on spatial relationship in the NVE (not physical 



network proximity). In our basic model, we assume that all AOIs 
are of the same radius, and are determined in an application-specific 
manner by the designer. Although a node only knows about a 
limited number of neighbors, it can learn of other new neighbors 
with the help of its boundary neighbors. Each peer serves as the 
“watchman” for one another in discovering approaching neighbors. 

When the node moves, position updates are sent to all neighbors 
recorded in the Voronoi. If the receiver is a boundary neighbor (as 
determined by the sender), an overlap-check is performed. The 
receiver checks if the mover, with its new AOI, would enter into 
any of its enclosing neighbors’ Voronoi region. The receiver only 
notifies the mover if a new overlap occurs (i.e. previously non-
overlapped region becomes overlapped). This allows the moving 
node to get aware of potentially visible neighbors outside the AOI 
with minimal network overhead (only normal movement message is 
used). In case of a node leave or failure, its neighbors simply update 
their Voronoi after detection (through a loss of TCP connection or 
inactivity timeout). If the leaving user is considered a boundary 
node, queries are sent to discover any replacement (Figure 7). 

3.2 Procedure 
We will describe the basic procedures for joining, moving and 

leaving in the P2P NVE. The emphasis of these procedures is to 
maintain P2P topology consistency in a message-efficient manner. 
Join 
1.  Joining node contacts the gateway server for a unique ID. 
2.  Join request is forwarded to acceptor region (defined as the 

region that contains the joiner’s coordinates) via neighboring 
nodes with simple greedy forward (see Figure 5L). 

3.  Acceptor node sends back a complete list of its own neighbors. 
4.  Joining node contacts each neighbor on the list. 
5.  Joining node builds up a new Voronoi while other nodes update 

their Voronoi to accommodate the joining node (see Figure 5R). 
Move 
1. Moving node sends position coordinates to all neighbors (i.e. 

boundary, enclosing, and other neighbors). Messages for 
boundary neighbors are specifically marked. 

2. Boundary neighbor will check if the moving node’s new AOI 
becomes overlapped with any of its enclosing-neighbor’s 
Voronoi regions. If so then it sends a notification. (Figure 6L). 

3. If a new neighbor is found, the moving node connects to it. 
4. Moving node disconnects any boundary neighbors whose 

Voronoi region no longer overlaps with its AOI (Figure 6R). 
Other actions (jump, chat, trade) 
1. Send message to relevant neighbors recorded in the Voronoi. 

(For example, a private chat is directed only to neighbor(s) in 
the conversation, but an action such as “jump” is sent to all 
neighbors that can see the action, i.e., those in the Voronoi.) 

Disconnect/Leave 
1. Leaving node notifies with a list of its enclosing neighbors. 
2. Neighboring nodes affected by the disconnection update their 

Voronoi. If the leaving node is seen as a boundary neighbor, 
then new boundary neighbors may be assigned. 

3. For abnormal departure of boundary neighbor, a request for 
enclosing neighbor list is sent to known neighbors to ensure that 
topology remains consistent (see Figure 7). 

   
Figure 5: Join procedure. (L) Forward of join request. Circle is 
gateway server. Arrow indicates the acceptor node. (R) Triangle 
is the new node, shaded regions are neighbors affected by join. 
Note that the effect is localized. 

  
Figure 6: Move procedure. (L) Triangle indicates the intended 
new position. Squares are new neighbors about to be discovered. 
(R) After the move. Squares are the neighbors no longer overlap 
with AOI, therefore are disconnected. 

  
Figure 7: Leave procedure. (L) Before node leave, star is the 
leaving node. (R) After node leave, triangles (∆) are the new 
boundary neighbors discovered with help of existing neighbors. 

3.3 Analysis 
A qualitative analysis of our current design is given below: 

Consistency: In our design, as long as each node correctly keeps 
track of at least their enclosing neighbors, there is a guaranteed path 
between any two nodes; since discovery is covered in all directions, 
no node would be missed. P2P topology is therefore both fully-
connected and consistent provided there is no network failure. Even 
if a small number of node fails, the network can still self-repair. This 
is an important improvement over existing approaches. Consistency 
in event synchronization is not currently guaranteed, because no 
“central authority” exists to decide the ordering. 
Performance: Transmission hop-count between peers is optimally 
efficient as there is no relay. The low latency quality allows for 
responsive applications. When users are close to each other, ideal 
interest management is achieved (i.e. only messages within the AOI 
are received). However, if users are dispersed, connections with 
enclosing neighbor beyond AOI are needed to maintain the 



topology (Figure 8L). Luckily, on average such neighbors are few, 
given Voronoi’s characteristics (six on average [9], but n-1 
neighbors in the worst-case, see Figure 8R).  

   
Figure 8: Potential issues with Voronoi. (L) Messages outside of 
AOI are still received to maintain P2P topology, but the amount 
is expected to be small. (R) Circular line-up of nodes. 
There are two inherent disadvantages in the current design. (1) Each 
node must send duplicate messages to reach the neighbors, which 
requires more bandwidth than client-server (i.e. only one message is 
sent). (2) Since no message is processed centrally, aggregation or 
compression techniques cannot be leveraged. 
Security: We assume all hosts can be trusted. 
Scalability: The architecture matches the two criteria for scalable 
systems: resource-growing and decentralized consumption. 
Persistency: We assume no persistent states in the current model. 
Reliability: As long as each node maintains some reliable neighbors, 
the system should be able to self-repair inconsistency due to node 
failures. However, if a large number of nodes fail simultaneously, 
the P2P overlay may still be separated into mutually unaware parts. 
However, this is a general problem faced by all P2P networks that 
warrants future study. 

4. IMPLEMENTATION 
There are a number of existing algorithms for constructing and 

maintaining Voronoi diagrams [4]. The particular one we implement 
is Fortune’s sweepline algorithm [2], which constructs Voronoi in 
O(n log n) time. Our design is currently implemented using High-
Level Architecture Run-Time Infrastructure (HLA-RTI) interface, 
an IEEE standard originally proposed by the U.S. Department of 
Defense. We are investigating the suitability of the standard for 
MMOG applications. We name the current implementation 
Adaptive Scalable Cooperative Environment for Networked 
Dimensions (ASCEND). Our long-term goal is to develop an open 
source platform for NVE development. 

5. CONCLUSION 
We have presented a general picture of the scalability problem 

in NVE, and have analyzed requirements for potential solutions. A 
promising solution for the difficult neighbor discovery problem is 
also presented, by using Voronoi diagram. The general idea of our 
solution is to leverage knowledge of each peer about its neighbors to 
maintain the position states of all participants. Our solution is simple, 
efficient, and close to ideal interest management in NVE. Future 
works include variable-size AOI, persistency maintenance and 
security mechanism under P2P.  

One of the most important concerns for commercial NVE is 
security, both for account information and game state authenticity 
(e.g. player’s experience points, valuable virtual items). While 
accounts can be handled by a central server, user computers are 

always prone to hacking. This is the main reason why client-
server is almost universally adopted. We feel that security might 
indeed be the main obstacle for commercial adoption of P2P, 
despite benefits in performance and cost. However, we believe 
that active research can be done to find “good enough” solutions. 
On the other hand, this “weakness” can be opportunity for other 
areas, such as education or social communities, where social 
interactions and collaborations are emphasized over competitions. 
One major feature of P2P NVE is its low cost, where scalability 
and performance is achieved affordably. For developers with 
limited budget, P2P NVE provides a promising alternative. 
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